论文标题

扩散模型的空间和时间相关性,迅速而延迟的出生和死亡事件

Space and time correlations for diffusion models with prompt and delayed birth-and-death events

论文作者

Bonnet, Théophile, Mancusi, Davide, Zoia, Andrea

论文摘要

了解受随机位移和出生和死亡事件的个人集合的统计特性是物理和生命科学中几种应用的关键,涵盖了核反应堆的诊断以及对流行模式的分析。先前对临界体制平均生育和死亡平衡的临界政权的调查表明,人口中可能发生高度非可行性的波动,导致自发的空间聚类,并最终导致危害灾难,在这种灾难中,波动会导致人口灭绝。当人口数量保持恒定时,会观察到较温和的行为:渐近地汇合并避免了危害灾难。在本文中,我们将通过考虑迅速和延迟的出生和死亡事件的更广泛的模型来扩展这些结果,这模仿了核反应堆物理学或孵育不足的前体。我们将考虑有或没有人口控制机制的模型。密度,两点相关函数和于点对距离的分析或半分析结果将得出并将其与蒙特卡洛模拟进行比较,将其用作参考。

Understanding the statistical properties of a collection of individuals subject to random displacements and birth-and-death events is key to several applications in physics and life sciences, encompassing the diagnostic of nuclear reactors and the analysis of epidemic patterns. Previous investigations of the critical regime, where births and deaths balance on average, have shown that highly non-Poissonian fluctuations might occur in the population, leading to spontaneous spatial clustering, and eventually to a critical catastrophe, where fluctuations can result in the extinction of the population. A milder behaviour is observed when the population size is kept constant: thefluctuations asymptotically level off and the critical catastrophe is averted. In this paper, we shall extend these results by considering the broader class of models with prompt and delayed birth-and-death events, which mimic the presence of precursors in nuclear reactor physics or incubation inepidemics. We shall consider models with and without population control mechanisms. Analytical or semi-analytical results for the density, the two-point correlation function and the mean-squared pair distance will be derived and compared to Monte Carlo simulations, which will be used as a reference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源