论文标题
量子特征值问题的物理信息神经网络
Physics-Informed Neural Networks for Quantum Eigenvalue Problems
论文作者
论文摘要
特征值问题对于科学和工程的几个领域至关重要。我们扩展了使用无监督神经网络来发现差分特征值问题的特征功能和特征值的方法。获得的溶液以分析和可区分的形式给出,该形式同样满足所需的边界条件。网络优化是无数据的,仅取决于神经网络的预测。我们介绍了两个具有物理信息的损失功能。第一个被称为正交的损害,它激发了网络发现对正交本征的。第二个损失术语称为Norm-Loss,要求发现归一化的本征函数,并用于避免琐碎的解决方案。我们发现,将神经网络体系结构嵌入甚至奇怪的对称性进一步改善了相关问题的融合。最后,耐心条件可用于自动识别本征函数解决方案。这种提出的无监督学习方法用于解决有限的井,多个有限的井以及氢原子特征值量子问题。
Eigenvalue problems are critical to several fields of science and engineering. We expand on the method of using unsupervised neural networks for discovering eigenfunctions and eigenvalues for differential eigenvalue problems. The obtained solutions are given in an analytical and differentiable form that identically satisfies the desired boundary conditions. The network optimization is data-free and depends solely on the predictions of the neural network. We introduce two physics-informed loss functions. The first, called ortho-loss, motivates the network to discover pair-wise orthogonal eigenfunctions. The second loss term, called norm-loss, requests the discovery of normalized eigenfunctions and is used to avoid trivial solutions. We find that embedding even or odd symmetries to the neural network architecture further improves the convergence for relevant problems. Lastly, a patience condition can be used to automatically recognize eigenfunction solutions. This proposed unsupervised learning method is used to solve the finite well, multiple finite wells, and hydrogen atom eigenvalue quantum problems.