论文标题
纳米结构中的自动伴奏环形偶极子操作员
The self-adjoint toroidal dipole operator in nanostructures
论文作者
论文摘要
核反应中的均等违规导致发现了新的环形多物种。从那时起,人们观察到在系统的电磁结构中存在环形多物,从基本颗粒到固态系统和超材料。圆环偶极$ {\ bf t} $(最低订单多极)是最常见的。在量子系统中,这对应于带有Projections $ \ hat {t} _i $($ i = 1,2,3 $)的Toroidal Dipole operator $ \ hat {\ bf t} $。在这里,我们分析具有圆柱对称性系统的系统中的量子粒子,这是出现环形矩的典型系统。我们在适当的曲线坐标中找到了哈密顿量,动量和环形偶极子操作员的表达式,这使我们能够为动量操作员的特征函数找到分析表达式。虽然环形偶极子是隐性化的,但这不是自我伴侣,而是在新的坐标中,操作员$ \ hat {t} _3 $将两个组成部分分成两个组成部分,其中一个是(仅)Hermitian,而另一个则是自我接合。自我接合成分是物理上重要的,代表可观察到的成分。此外,我们从数值上对哈密顿量和环形偶极子操作员进行数字化,并找到其特征功能和特征值。我们编写分区函数并计算圆环上理想颗粒系统的热力学量。除了证明环形偶极子是自动化的,因此可以观察到(基本相关性的发现),此类系统开辟了制造超材料的可能性,从而利用圆环偶极子的量化和量子性能。
The parity violation in nuclear reactions led to the discovery of the new class of toroidal multipoles. Since then, it was observed that toroidal multipoles are present in the electromagnetic structure of systems at all scales, from elementary particles, to solid state systems and metamaterials. The toroidal dipole ${\bf T}$ (the lowest order multipole) is the most common. In quantum systems, this corresponds to the toroidal dipole operator $\hat{\bf T}$, with the projections $\hat{T}_i$ ($i=1,2,3$) on the coordinate axes. Here we analyze a quantum particle in a system with cylindrical symmetry, which is a typical system in which toroidal moments appear. We find the expressions for the Hamiltonian, momenta, and toroidal dipole operators in adequate curvilinear coordinates, which allow us to find analytical expressions for the eigenfunctions of the momentum operators. While the toroidal dipole is hermitian, it is not self-adjoint, but in the new set of coordinates the operator $\hat{T}_3$ splits into two components, one of which is (only) hermitian, whereas the other one is self-adjoint. The self-adjoint component is the one that is physically significant and represents an observable. Furthermore, we numerically diagonalize the Hamiltonian and the toroidal dipole operator and find their eigenfunctions and eigenvalues. We write the partition function and calculate the thermodynamic quantities for a system of ideal particles on a torus. Besides proving that the toroidal dipole is self-adjoint and therefore an observable (a finding of fundamental relevance) such systems open up the possibility of making metamaterials that exploit the quantization and the quantum properties of the toroidal dipoles.