论文标题

将有限元素与深神经操作员进行的有限元素,以快速的多尺度建模

Interfacing Finite Elements with Deep Neural Operators for Fast Multiscale Modeling of Mechanics Problems

论文作者

Yin, Minglang, Zhang, Enrui, Yu, Yue, Karniadakis, George Em

论文摘要

多尺度建模是研究具有不同大小特征的多物理系统的有效方法,其中具有不同分辨率或异质描述的模型被耦合在一起以预测系统的响应。具有较低忠诚度(粗)的求解器负责模拟具有均匀特征的域,而昂贵的高保真度(罚款)模型描述了具有精致离散化的微观特征,通常使整体成本过高,尤其是对于时间依赖的问题。在这项工作中,我们探讨了通过机器学习的多尺度建模的想法,并使用神经操作员Deeponet作为昂贵求解器的有效替代品。使用从精细求解器获取的数据来学习基础且可能未知的细尺度动力学,对DeWnet进行了训练的离线训练。然后将其与标准PDE求解器耦合,以预测在耦合阶段具有新的边界/初始条件的多尺度系统。提议的框架大大降低了多尺度模拟的计算成本,因为Deponet推断成本可以忽略不计,因此很容易促进多个界面条件和耦合方案的融合。我们提出各种基准来评估准确性和速度,特别是我们为时间依赖的问题开发了一种耦合算法,并且我们还证明了连续模型(有限元方法,fem)与神经粒子系统的神经操作员(平滑粒子水力动力学,SPH)的神经操作员的耦合,以实现单独的超质量材料。使这种方法与众不同的是,训练有素的过度参数的Deeponet可以很好地概括并以可忽略的成本进行预测。

Multiscale modeling is an effective approach for investigating multiphysics systems with largely disparate size features, where models with different resolutions or heterogeneous descriptions are coupled together for predicting the system's response. The solver with lower fidelity (coarse) is responsible for simulating domains with homogeneous features, whereas the expensive high-fidelity (fine) model describes microscopic features with refined discretization, often making the overall cost prohibitively high, especially for time-dependent problems. In this work, we explore the idea of multiscale modeling with machine learning and employ DeepONet, a neural operator, as an efficient surrogate of the expensive solver. DeepONet is trained offline using data acquired from the fine solver for learning the underlying and possibly unknown fine-scale dynamics. It is then coupled with standard PDE solvers for predicting the multiscale systems with new boundary/initial conditions in the coupling stage. The proposed framework significantly reduces the computational cost of multiscale simulations since the DeepONet inference cost is negligible, facilitating readily the incorporation of a plurality of interface conditions and coupling schemes. We present various benchmarks to assess accuracy and speedup, and in particular we develop a coupling algorithm for a time-dependent problem, and we also demonstrate coupling of a continuum model (finite element methods, FEM) with a neural operator representation of a particle system (Smoothed Particle Hydrodynamics, SPH) for a uniaxial tension problem with hyperelastic material. What makes this approach unique is that a well-trained over-parametrized DeepONet can generalize well and make predictions at a negligible cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源