论文标题

Kerr增强了磁力力学的逆转冷却

Kerr enhanced backaction cooling in magnetomechanics

论文作者

Zoepfl, D., Juan, M. L., Diaz-Naufal, N., Schneider, C. M. F., Deeg, L. F., Sharafiev, A., Metelmann, A., Kirchmair, G.

论文摘要

光学机械是光质相互作用的一个主要示例,其中光子直接将其与声子搭配在一起,从而可以精确控制和测量机械对象的状态。这使其成为测试基本物理或感应应用程序的非常吸引人的平台。通常,这种机械振荡器处于高度激发的热状态,需要冷却到机械基态以进行量子应用,这通常是通过利用光学机械反击来完成的。但是,尽管对于许多任务而言,大量的机械振荡器都是可取的,但它们的频率通常降低到空腔线宽以下,这大大限制了可用于有效冷却的方法。在这里,我们展示了一种新颖的方法,该方法依赖于本质上的非线性腔来背离低频机械振荡器。我们在实验上证明了超过一个数量级以上的相同但线性系统的表现。此外,我们的理论预测,通过这种方法,我们还可以超过线性系统的标准冷却极限。通过利用非线性腔,我们的方法可以有效地冷却更广泛的光学机械系统,从而为基本测试和传感打开了新的机会。

Optomechanics is a prime example of light matter interaction, where photons directly couple to phonons, allowing to precisely control and measure the state of a mechanical object. This makes it a very appealing platform for testing fundamental physics or for sensing applications. Usually, such mechanical oscillators are in highly excited thermal states and require cooling to the mechanical ground state for quantum applications, which is often accomplished by utilising optomechanical backaction. However, while massive mechanical oscillators are desirable for many tasks, their frequency usually decreases below the cavity linewidth, significantly limiting the methods that can be used to efficiently cool. Here, we demonstrate a novel approach relying on an intrinsically nonlinear cavity to backaction-cool a low frequency mechanical oscillator. We experimentally demonstrate outperforming an identical, but linear, system by more than one order of magnitude. Furthermore, our theory predicts that with this approach we can also surpass the standard cooling limit of a linear system. By exploiting a nonlinear cavity, our approach enables efficient cooling of a wider range of optomechanical systems, opening new opportunities for fundamental tests and sensing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源