论文标题

Fisher Zeros的位置和YT = 1/ν的估计值是为Baxter-Wu模型的

The location of the Fisher zeros and estimates of yT = 1/ν are found for the Baxter-Wu model

论文作者

Monroe, James L.

论文摘要

结果表明,Baxter-Wu模型的Fisher Zeros的位置非常简单,具有两个有限尺寸的群集,具有球形边界条件。它们位于复杂的sinh [2 \ b {eta} J3]平面中的单位圆上。这与在平方晶格上具有最近的邻居相互作用J2​​的Ising模型的Fisher零相同,并具有Brascamp-Kunz边界条件。 Baxter-Wu模型是一个在三角晶格上具有三个位点相互作用J3的ISIN模型。从领先的Fisher零,使用有限尺寸缩放,获得了临界指数1/ν的准确估计。此外,使用领先零的假想部分与领先零的实际部分导致不同的结果相似,Janke和Kenna对于最近的邻居的结果,正方形晶格上的模型并将这种行为扩展到多站点相互作用系统。

It is shown that the location of the Fisher zeros of the Baxter-Wu model, for two series of finite sized clusters, with spherical boundary conditions, is extremely simple. They lie on the unit circle in the complex Sinh[2\b{eta}J3] plane. This is the same location as the Fisher zeros of the Ising model with nearest neighbor interactions, J2, on the square lattice have, with Brascamp-Kunz boundary conditions. The Baxter-Wu model is an Ising model with three site interactions, J3, on the triangle lattice. From the leading Fisher zeros, using finite size scaling, accurate estimates of the critical exponent 1/ν are obtained. Furthermore, using the imaginary parts of the leading zeros versus the real part of the leading zeros leads to different results similar the results of Janke and Kenna for the nearest neighbor, Ising model on the square lattice and extending this behavior to a multi-site interaction system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源