论文标题
哈勃太空望远镜检测彗星核C/2014 Un $ _ {271} $(Bernardinelli-Bernstein)
Hubble Space Telescope Detection of the Nucleus of Comet C/2014 UN$_{271}$ (Bernardinelli-Bernstein)
论文作者
论文摘要
我们使用{\ it {\ it Hubble太空望远镜} 1月8日对遥远的彗星C/2014 Un $ _ {271} $(Bernardinelli-Bernstein)进行了高分辨率。绝对幅度为$ 8.62 \ pm 0.11 $。视觉几何反照率带有有效半径平方的产物为$ p_v r_n^2 $ = 159 $ \ pm $ 16 km $^2 $。如果Lellouch等人的Alma观察。 (2022)指的是一个裸露的核,我们得出了一个视觉几何反照率为0.034 \ pm 0.008 $,有效直径为$ 137 \ pm 15 $ km。如果存在ALMA信号的灰尘污染以最大允许的水平(24%),我们发现核直径$ 119 \ pm 13 $ km,反照率为$ 0.044 \ pm 0.011 $。无论哪种情况,我们都会确认C/2014 Un $ _ {271} $是有史以来最大的长期彗星。从昏迷的测得的表面亮度曲线来看,昏迷的对数梯度在$ \ sim $ 1和1.7之间因太阳辐射压力而变化,质量产量与稳态产生一致,但与冲动的弹性不一致,但爆发会产生。使用光圈光度法,我们估计了$ \ sim $ 10 $^3 $ kg s $^{ - 1} $的巨大(尽管不确定)的质量损失率,而HeliPentric距离为$ \ sim $ 20 au。
We present a high-resolution observation of distant comet C/2014 UN$_{271}$ (Bernardinelli-Bernstein) using the {\it Hubble Space Telescope} on 2022 January 8. The signal of the nucleus was successfully isolated by means of the nucleus extraction technique, with an apparent $V$-band magnitude measured to be $21.64 \pm 0.11$, corresponding to an absolute magnitude of $8.62 \pm 0.11$. The product of the visual geometric albedo with the effective radius squared is $p_V R_n^2$ = 159$\pm$16 km$^2$. If the ALMA observation by Lellouch et al. (2022) refers to a bare nucleus, we derive a visual geometric albedo of $0.034 \pm 0.008$ and an effective diameter of $137 \pm 15$ km. If dust contamination of the ALMA signal is present at the maximum allowed level (24%), we find nucleus diameter $119 \pm 13$ km and albedo of $0.044 \pm 0.011$. In either case, we confirm that C/2014 UN$_{271}$ is the largest long-period comet ever detected. Judging from the measured surface brightness profile of the coma, whose logarithmic gradient varies azimuthally between $\sim$1 and 1.7 in consequence of solar radiation pressure, the mass production is consistent with steady-state production but not with impulsive ejection, as would be produced by an outburst. Using aperture photometry we estimated an enormous (albeit uncertain) mass-loss rate of $\sim$10$^3$ kg s$^{-1}$ at a heliocentric distance of $\sim$20 au.