论文标题

VTOL无人机的基于智能视觉的自主船着陆

Intelligent Vision-based Autonomous Ship Landing of VTOL UAVs

论文作者

Lee, Bochan, Saj, Vishnu, Benedict, Moble, Kalathil, Dileep

论文摘要

该论文讨论了一种基于智能视觉的控制解决方案,用于自主跟踪和降落垂直起飞和降落(VTOL)在船上具有无人驾驶汽车(无人机)的无人使用,而无需使用GPS信号。中心想法涉及自动化海军直升机船着陆程序,在该程序中,飞行员利用该船作为远程跟踪的视觉参考;但是,指的是在大多数称为“地平线棒”的海军船上安装的标准化视觉提示,以进行最终进近和着陆阶段。该想法是使用与机器视觉集成的独特设计的非线性控制器实现的。视觉系统利用基于机器学习的对象检测来进行远程船舶跟踪和经典的计算机视觉,以在最终进近和着陆阶段使用地平线估算飞机相对位置和方向。非线性控制器根据视觉系统估计的信息运行,即使在存在不确定性的情况下,也证明了强大的跟踪性能。开发的自动船舶着陆系统是在配备了板载摄像头的四轮摩托车无人机上实施的,在移动的甲板上成功证明了进近和着陆,该甲板模仿了现实的船甲板运动。进行了广泛的模拟和飞行测试,以证明垂直着陆安全性,跟踪能力和着陆精度。

The paper discusses an intelligent vision-based control solution for autonomous tracking and landing of Vertical Take-Off and Landing (VTOL) capable Unmanned Aerial Vehicles (UAVs) on ships without utilizing GPS signal. The central idea involves automating the Navy helicopter ship landing procedure where the pilot utilizes the ship as the visual reference for long-range tracking; however, refers to a standardized visual cue installed on most Navy ships called the "horizon bar" for the final approach and landing phases. This idea is implemented using a uniquely designed nonlinear controller integrated with machine vision. The vision system utilizes machine learning-based object detection for long-range ship tracking and classical computer vision for the estimation of aircraft relative position and orientation utilizing the horizon bar during the final approach and landing phases. The nonlinear controller operates based on the information estimated by the vision system and has demonstrated robust tracking performance even in the presence of uncertainties. The developed autonomous ship landing system was implemented on a quad-rotor UAV equipped with an onboard camera, and approach and landing were successfully demonstrated on a moving deck, which imitates realistic ship deck motions. Extensive simulations and flight tests were conducted to demonstrate vertical landing safety, tracking capability, and landing accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源