论文标题

在电化学加工中建模移动边界价值问题

Modeling moving boundary value problems in electrochemical machining

论文作者

van der Velden, Tim, Ritzert, Stephan, Reese, Stefanie, Waimann, Johanna

论文摘要

这项工作提出了一种新的方法,可以在电化学加工的移动边界价值问题中有效建模阴极。直到最近,带有有限元素的过程模拟仍具有不断变化的表面几何形状所需的重新构造的缺点。通过使用有效的材料参数以及溶解水平作为内部变量的新型模型公式,克服了这种缺点,因此,不需要重新安排。现在,我们将此概念扩展到模型,以任意形状和移动的阴极。研究了两种方法,以描述阴极的时间变化。在第一种方法中,我们改变了阴极内部元件的电导率,并在第二种方法中更改了dirichlet边界条件,对相应元素的节点进行应用。对于两种方法,用有效的材料参数处理了阴极表面上的元素。该程序允许在没有网格适应的情况下有效地模拟与工业相关的复杂几何形状。该模型的性能通过文献的分析,数值和实验结果来验证。简短的计算时间使该方法对于工业应用有趣。

This work presents a new approach to efficiently model the cathode in the moving boundary value problem of electrochemical machining. Until recently, the process simulation with finite elements had the drawback of remeshing required by the changing surface geometries. This disadvantage was overcome by a novel model formulation for the anodic dissolution that utilizes effective material parameters as well as the dissolution level as an internal variable and, thereby, does not require remeshing. Now, we extend this concept to model arbitrarily shaped and moving cathodes. Two methodologies are investigated to describe the time varying position of the cathode. In the first approach, we change the electric conductivity of elements within the cathode and, in a second approach, we apply Dirichlet boundary conditions on the nodes of corresponding elements. For both methods, elements on the cathode's surface are treated with effective material parameters. This procedure allows for the efficient simulation of industrially relevant, complex geometries without mesh adaptation. The model's performance is validated by means of analytical, numerical and experimental results from the literature. The short computation times make the approach interesting for industrial applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源