论文标题
$ d $二二维广告的Lévy步行及其与其他时空耦合型号的关系
Nonergodicity of $d$-dimensional generalized Lévy walks and their relation to other space-time coupled models
论文作者
论文摘要
我们研究了Shlesinger等人引入的广义LévyWalk的非效应。 [物理。莱特牧师。关于平方位移的58,1100(1987)]。我们介绍了在最近的一封信中概述的先前发现的详细分析推导[物理学。莱特牧师。 120,104501(2018)],给出深刻的解释,尤其强调了三个令人惊讶的结果:首先,我们发现均值的位移可以在一定范围的参数值方面发散。其次,我们表明,轨迹的合奏可以细分地扩散,而单个时空平方的位移则显示超扩散。第三,我们认识到,时间平方的平方位移的波动可能会变得如此之大,以至于刺破参数差异,我们称之为无限强的麦迪奇质性破裂。后一种现象也可能发生在参数值的情况下,其中均方位移的滞后时间依赖性是线性表示正常扩散的。为了通过数值确定时间平方的平方位移的完整分布,我们使用重要性采样。为了将我们的新发现嵌入文献中的现有结果中,我们定义了一个更通用的模型,我们称之为可变的速度广义LévyWalk,其中包括文献中众所周知的模型,例如特殊情况,例如时空耦合的Lévy飞行或异常的Drude模型。我们讨论并解释了有关详细详细介绍的广义莱维步行的发现,并将其与更通用模型之后的其他时空耦合模型的非连接性进行了比较。
We investigate the nonergodicity of the generalized Lévy walk introduced by Shlesinger et al. [Phys. Rev. Lett. 58, 1100 (1987)] with respect to the squared displacements. We present detailed analytical derivations of our previous findings outlined in a recent Letter [Phys. Rev. Lett. 120, 104501 (2018)], give profound interpretations, and especially emphasize three surprising results: First, we find that the mean-squared displacements can diverge for a certain range of parameter values. Second, we show that an ensemble of trajectories can spread subdiffusively, whereas individual time-averaged squared displacements show superdiffusion. Third, we recognize that the fluctuations of the time-averaged squared displacements can become so large that the ergodicity breaking parameter diverges, what we call infinitely strong ergodicity breaking. The latter phenomenon can also occur for paramter values where the lag-time dependence of the mean-squared displacements is linear indicating normal diffusion. In order to numerically determine the full distribution of time-averaged squared displacements, we use importance sampling. For an embedding of our new findings into existing results in the literature, we define a more general model which we call variable speed generalized Lévy walk and which includes well known models from the literature as special cases such as the space-time coupled Lévy flight or the anomalous Drude model. We discuss and interpret our findings regarding the generalized Lévy walk in detail and compare them with the nonergodicity of the other space-time coupled models following from the more general model.