论文标题

n级量子系统中一般可观察物的弱价值论点的几何解释

Geometrical interpretation of the argument of weak values of general observables in N-level quantum systems

论文作者

Ferraz, Lorena Ballesteros, Lambert, Dominique L., Caudano, Yves

论文摘要

量子弱测量值的观察结果由称为弱值的复数确定。我们对在几何阶段的$ n $维量子系统中的弱价值弱价值的论点进行了几何解释。我们在$ n^2-1 $ dimensions,$ s^{n^2-2} $的单位球上的三个真实向量的功能中提出了任意弱值。这些向量分别与初始状态和最终状态以及弱测量的可观察到相关。我们在$ n-1 $尺寸的复杂投影空间中表达纯状态,$ \ mathbb {c} \ textrm {p}^{n-1} $,它具有非平淡的表示为$ 2N-2 $尺寸的子手:$ s^{n^2-2} $(n^2-2} $的$ s^{n^2-2} $(bloch spheys for bloch spheys for qudits)。投影仪在$ n $级量子系统的纯状态下的弱价值的论点描述了与代表预选状态,投影仪,投影仪和$ \ MATHBB \ MATHBB {C} c} c} \ textrm {pextrm {p}}^n-n}的向量跨越的媒介跨越的媒介跨越地理三角形相关的几何阶段。然后,我们继续表明,一般可观察到的弱价值的论点等同于有效的巴格曼不变的论点。因此,我们将投影仪弱值的几何解释扩展到一般可观察的弱价值。特别是,我们考虑了广义Gell-Mann矩阵给出的SU($ n $)的发电机。最后,我们详细研究了两级系统中一般可观察物的弱价值的论点,并通过考虑退化子空间上的投影仪以及He​​rmitian量子门来说明较大维系统中的弱测量值。

Observations in quantum weak measurements are determined by complex numbers called weak values. We present a geometrical interpretation of the argument of weak values of general Hermitian observables in $N$-dimensional quantum systems in terms of geometric phases. We formulate an arbitrary weak value in function of three real vectors on the unit sphere in $N^2-1$ dimensions, $S^{N^2-2}$. These vectors are linked to the initial and final states, and to the weakly measured observable, respectively. We express pure states in the complex projective space of $N-1$ dimensions, $\mathbb{C}\textrm{P}^{N-1}$, which has a non-trivial representation as a $2N-2$ dimensional submanifold of $S^{N^2-2}$ (a generalization of the Bloch sphere for qudits). The argument of the weak value of a projector on a pure state of an $N$-level quantum system describes a geometric phase associated to the symplectic area of the geodesic triangle spanned by the vectors representing the pre-selected state, the projector and the post-selected state in $\mathbb{C}\textrm{P}^{N-1}$. We then proceed to show that the argument of the weak value of a general observable is equivalent to the argument of an effective Bargmann invariant. Hence, we extend the geometrical interpretation of projector weak values to weak values of general observables. In particular, we consider the generators of SU($N$) given by the generalized Gell-Mann matrices. Finally, we study in detail the case of the argument of weak values of general observables in two-level systems and we illustrate weak measurements in larger dimensional systems by considering projectors on degenerate subspaces, as well as Hermitian quantum gates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源