论文标题
过去无与伦比的尘埃宇宙学中的空锥的平均问题
The averaging problem on the past null cone in inhomogeneous dust cosmologies
论文作者
论文摘要
宇宙学模型通常忽略了时空歧管在小尺度上的复杂性,以假设理想化的一般相对论解决方案来描述宇宙的平均动力学。尽管这些解决方案在计算数据方面非常成功,但它们引入了许多宇宙学中的难题,因此它们的基本假设对于测试很重要。在本文中,我们超越了宇宙学的通常假设,并提出了一种形式主义,以平均在观察者过去的零锥上平均当地的一般相对论时空:我们在光线从宇宙象征发射器传播到观察者时,表达了光线的平均特性。能量弹药张量是由无关的灰尘源和宇宙常数组成的 - 与$λ$ CDM模型相同的组件 - 但宇宙后期的$λ$ CDM模型 - 但指标溶液不是\ emph {先验}被限制为局部均具有局部均匀或同型或异位的。这通常使大规模的动力学与简单的Friedmann--lema \^ıtre-Robertson-Robertson-Walker解决方案不同。我们的形式主义通过在向观察者传播的光线方程式的完全协变量系统中量化了此类偏离,该系统可以直接应用于宇宙可观察物的分析和数值研究。为此,我们制定了可观察量的光前平均值,包括有效的角直径距离和宇宙学红移漂移,我们还讨论了这些可观察物的反射效应。
Cosmological models typically neglect the complicated nature of the spacetime manifold at small scales in order to hypothesize idealized general relativistic solutions for describing the average dynamics of the Universe. Although these solutions are remarkably successful in accounting for data, they introduce a number of puzzles in cosmology, and their foundational assumptions are therefore important to test. In this paper, we go beyond the usual assumptions in cosmology and propose a formalism for averaging the local general relativistic spacetime on an observer's past null cone: we formulate average properties of light fronts as they propagate from a cosmological emitter to an observer. The energy-momentum tensor is composed of an irrotational dust source and a cosmological constant -- the same components as in the $Λ$CDM model for late cosmic times -- but the metric solution is not \emph{a priori}constrained to be locally homogeneous or isotropic. This generally makes the large-scale dynamics depart from that of a simple Friedmann--Lema\^ıtre--Robertson--Walker solution through \emph{backreaction} effects. Our formalism quantifies such departures through a fully covariant system of area-averaged equations on the light fronts propagating towards an observer, which can be directly applied to analytical and numerical investigations of cosmic observables. For this purpose, we formulate light front averages of observable quantities, including the effective angular diameter distance and the cosmological redshift drift and we also discuss the backreaction effects for these observables.