论文标题

$ c_t $用于奇数尺寸球体上的田野缺陷,用于更高衍生的传播

$C_T$ for monodromy defects of fields on odd dimensional spheres for higher derivative propagation

论文作者

Dowker, J. S.

论文摘要

中央电荷$ c_t $是根据gjms型动力学操作员在奇数$ d $维球面上播放的标量和狄拉克场计算的,在球形单片的存在下。 $ c_t $与圆锥形变形球体上的自由能的衍生物通过perlmutter因子的关系导致数值正交。 $ c_t $随着$ c_t $的变化,$Δ$显示出符号变化,就像在范围内一样。 $ C_T $的封闭表格是在$δ$等于0或1/2与派生订单或奇数等于0或1/2时的封闭表格,并显示出与现有的,甚至$ d $表达式的一致。在这些特殊情况下,无限的$ d $限制也会得出。

The central charge $C_T$ is computed for scalar and Dirac fields propagating according to GJMS-type kinetic operators acting on odd $d$-dimensional spheres in the presence of a spherical monodromy. The relation of $C_T$ to the derivatives of the free energy on the conically deformed sphere via the Perlmutter factor leads to a numerical quadrature. The variation of $C_T$ with the monodromy flux, $δ$, displays sign changes, exactly as in even dimensions. Closed forms for $C_T$ are derived when $δ$ equals 0 or 1/2 with the derivative order either even or odd and shown to agree with existing, even $d$ expressions. The infinite $d$ limits are also derived in these special cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源