论文标题

具有两个参数的广义正弦函数的实现分析

Real-Analyticity of Generalized Sine Functions with Two Parameters

论文作者

Ding, Pisheng

论文摘要

我们确定$ \ sin_ {p,n} $在任何实际数字$ p> 1 $和任何整数$ n> 1 $的最大真实间隔。我们首先证明$ \ sin_ {p,n} $在$(1/2)π_{p,n} $ iff $ p = m/(m-1)$中,对于某些整数$ m> 1 $,在这种情况下,我们确定泰勒convergence系列的半径为$(1/2)$(1/2)π__{p,n}。

We identify the maximal real interval on which $\sin_{p,n}$ is real-analytic for any real number $p>1$ and any integer $n>1$. We achieve this by first proving that $\sin_{p,n}$ is analytic at $(1/2)π_{p,n}$ iff $p=m/(m-1)$ for some integer $m>1$, in which case we determine the radius of convergence of the Taylor series at $(1/2)π_{p,n}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源