论文标题
Bipyramid卷,Mahler度量和某些$ \ Mathbb {Z}^2 $ - 周期链接
Bipyramid Volume, Mahler Measure and Some $\mathbb{Z}^2$-periodic Links
论文作者
论文摘要
Champanerkar,Kofman和Lalín猜想了链接的双锥体量与Mahler量之间的不平等,并衡量了来自Torus上的交替链路引起的相关二聚体模型。双曲体积和Mahler度量可能与等膜图有关,这使我们能够确认两个示例的猜想。通过利用二聚体型号的完美匹配与晶格上树的完美匹配之间的连接,可以计算五个示例。
Champanerkar, Kofman and Lalín conjectured an inequality between bipyramid volume of links and Mahler measure of associated dimer models induced from alternating links on torus. Hyperbolic volume and Mahler measure can be related for isoradial graphs, which allows us to confirm the conjecture for two examples. By exploiting a connection between perfect matchings of dimer models and spanning trees on lattices, five more examples are calculated.