论文标题
来自T-偶尔的有限电动力学
Finite electrodynamics from T-duality
论文作者
论文摘要
在本文中,我们介绍了Padmanabhan在电动力学方面的传播器的影响。这对应于在u(1)仪表理论中实现t偶尔性效应。通过制定与上述假设一致的非局部作用,我们通过路径积分方法得出电荷之间的静态电势的曲线。有趣的是,库仑电势结果由长度比例与参数$ $(α^\ prime)^{1/2} $正规化。因此,田野正在消失。我们还讨论了一系列实验测试床以揭示上述结果。有趣的是,观察到T-二元性会产生尺寸分形化的效果,类似于分数电磁作用中的相似现象。最后,我们的结果也通过量规不变方法得出,这是任何非马克斯威尔理论的一致性的必要检查。
In this paper, we present the repercussions of Padmanabhan's propagator in electrodynamics. This corresponds to implement T-duality effects in a U(1) gauge theory. By formulating a nonlocal action consistent with the above hypothesis, we derive the profile of static potentials between electric charges via a path integral approach. Interestingly, the Coulomb potential results regularized by a length scale proportional to the parameter $(α^\prime)^{1/2}$. Accordingly, fields are vanishing at the origin. We also discuss an array of experimental testbeds to expose the above results. It is interesting to observe that T-duality generates an effect of dimensional fractalization, that resembles similar phenomena in fractional electromagnetism. Finally, our results have also been derived with a gauge-invariant method, as a necessary check of consistency for any non-Maxwellian theory.