论文标题
计算几何相交图中的同构列表
Computing list homomorphisms in geometric intersection graphs
论文作者
论文摘要
从图$ g $到图$ h $的同构映射是从$ v(g)$到$ v(h)$的边缘保留映射。令$ h $为带有可能循环的固定图。在由\ textsc {lhom}($ h $)表示的列表同构问题中,该实例是一个图$ g $,每个顶点都配备了$ v(h)$的子集,称为列表。我们询问是否存在从$ g $到$ h $的同态性,以便从$ g $的每个顶点都从其列表中映射到顶点。 我们研究\ textsc {lhom}($ h $)问题的复杂性在各种几何对象的相交图中。特别是,我们有兴趣回答哪些图形$ h $的问题以及对于哪些类型的几何对象,\ textsc {lhom}($ h $)问题可以在实例的人数中以时间为单位解决。 我们完全解决了字符串图的问题,即平面中连续曲线的相交图。令人惊讶的是,事实证明,二分法与类似的二分法完全一致,该图形不包括固定路径作为诱导子图的固定路径[Okrasa,rozą该ewski,STACS 2021]。 然后,我们将注意力转向弦图的子类,定义为脂肪对象的交叉点。我们观察到,在此类类中,(非)次指定时间算法的存在与$ h $中的最大反射插曲的尺寸$ \ mathrm {mrc}(h)$密切相关,即,在其中,每一个都有一个循环。我们研究了\ textsc {lHom}($ h $)在(i)cosevex convex convex fat对象,(ii)类似尺寸的对象和(iii)disk的交点图中,保证存在$ \ mathrm {mrc}(h)$的最大值,该$保证了\ textsc {lhom}($ h $)的次指定时间算法。在前两种情况下,我们通过给出匹配算法和下限来获得最佳结果。 最后,我们讨论了结果的可能扩展,以对\ textsc {lhom}($ h $)的加权概括。
A homomorphism from a graph $G$ to a graph $H$ is an edge-preserving mapping from $V(G)$ to $V(H)$. Let $H$ be a fixed graph with possible loops. In the list homomorphism problem, denoted by \textsc{LHom}($H$), the instance is a graph $G$, whose every vertex is equipped with a subset of $V(H)$, called list. We ask whether there exists a homomorphism from $G$ to $H$, such that every vertex from $G$ is mapped to a vertex from its list. We study the complexity of the \textsc{LHom}($H$) problem in intersection graphs of various geometric objects. In particular, we are interested in answering the question for what graphs $H$ and for what types of geometric objects, the \textsc{LHom}($H$) problem can be solved in time subexponential in the number of vertices of the instance. We fully resolve this question for string graphs, i.e., intersection graphs of continuous curves in the plane. Quite surprisingly, it turns out that the dichotomy exactly coincides with the analogous dichotomy for graphs excluding a fixed path as an induced subgraph [Okrasa, Rzążewski, STACS 2021]. Then we turn our attention to subclasses of string graphs, defined as intersections of fat objects. We observe that the (non)existence of subexponential-time algorithms in such classes is closely related to the size $\mathrm{mrc}(H)$ of a maximum reflexive clique in $H$, i.e., maximum number of pairwise adjacent vertices, each of which has a loop. We study the maximum value of $\mathrm{mrc}(H)$ that guarantees the existence of a subexponential-time algorithm for \textsc{LHom}($H$) in intersection graphs of (i) convex fat objects, (ii) fat similarly-sized objects, and (iii) disks. In the first two cases we obtain optimal results, by giving matching algorithms and lower bounds. Finally, we discuss possible extensions of our results to weighted generalizations of \textsc{LHom}($H$).