论文标题

量子哈密顿平均场模型中的三智度点

Tricritical point in the quantum Hamiltonian mean-field model

论文作者

Schmid, Harald, Dieplinger, Johannes, Solfanelli, Andrea, Succi, Sauro, Ruffo, Stefano

论文摘要

近年来,在各种量子系统中取得了巨大的成功,在实验平台中的工程长距离交互取得了巨大的成功。受到这一进展的启发,我们提出了将古典汉密尔顿平均场模型概括为费米子颗粒。我们研究了模型在规范集合中的相图和热力学特性,用于铁磁相互作用,作为温度和跳跃的函数。在零温度下,小电荷波动通过一阶量子相转变从零温度下的订购相到无序相的一阶量子相变。在较高的温度下,波动引起的相变最初是一阶,并且仅在三智度点切换到二阶。我们的结果为具有远距离耦合的量子系统提供了一个有趣的例子,具有直接的实验相关性。分析是通过精确的对角和平均场理论进行的。

Engineering long-range interactions in experimental platforms has been achieved with great success in a large variety of quantum systems in recent years. Inspired by this progress, we propose a generalization of the classical Hamiltonian mean-field model to fermionic particles. We study the phase diagram and thermodynamic properties of the model in the canonical ensemble for ferromagnetic interactions as a function of temperature and hopping. At zero temperature, small charge fluctuations drive the many-body system through a first order quantum phase transition from an ordered to a disordered phase at zero temperature. At higher temperatures, the fluctuation-induced phase transition remains first order initially and switches to second order only at a tricritical point. Our results offer an intriguing example of tricriticality in a quantum system with long-range couplings, which bears direct experimental relevance. The analysis is performed by exact diagonalization and mean-field theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源