论文标题

高超球方法与雅各比边界条件的二聚体碰撞

Hyperspherical approach to atom--dimer collision with the Jacobi boundary condition

论文作者

Zhao, Cai-Yun, Zhang, Yi, Han, Hui-Li, Shi, Ting-Yun

论文摘要

在这项研究中,我们研究了超球形方法框架内的原子 - 二聚体散射。使用R-Matrix繁殖技术与平滑可变离散方法结合使用的R-Matrix繁殖技术来求解耦合的通道Schrödinger方程。在匹配过程中,渐近波函数在旋转的雅各比坐标中表达。我们将这种方法应用于弹性散射$^{3} $ He(t $ \ uparrow $) + $^{4} $ he $ _ {2} $和h $ \ uparrow $ + h $ + h $ + h $ \ uparrow $ li processes。研究了散射长度随传播距离的函数的收敛性。我们发现该方法是可靠的,可以比以前的繁殖器提供大量节省。

In this study, we investigate atom--dimer scattering within the framework of the hyperspherical method. The coupled channel Schrödinger equation is solved using the R-matrix propagation technique combined with the smooth variable discretization method. In the matching procedure, the asymptotic wave functions are expressed in the rotated Jacobi coordinates. We apply this approach to the elastic scattering $^{3}$He(T$\uparrow$) + $^{4}$He$_{2}$ and H$\uparrow$ + H$\uparrow$Li processes. The convergence of the scattering length as a function of the propagation distance is studied. We find that the method is reliable and can provide considerable savings over previous propagators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源