论文标题

关键的等匹配图

Critical Equimatchable Graphs

论文作者

Deniz, Zakir, Ekim, Tınaz

论文摘要

如果G的每个最大匹配均具有相同的基数,则图G是等效的。在本文中,我们研究了可匹配的图形,以使任何边缘的去除都会损害等于边缘临界的可匹配图(ECE-Graphs)。我们表明,除了两种简单的情况,即二分化ece-graphs,甚至集团,所有ECE编织都是2个关键因子关键的。因此,我们给出了具有连接性2的关键因子环境图形的表征。我们的结果为Levit和Mandrescu提出的关于覆盖良好的图表所提出的开放问题提供了部分答案,而没有脱落顶点。我们还介绍了可匹配的图表,以使任何顶点的去除都会损害等于匹配的性,称为临界值等匹配图(vce-graphs)。总而言之,我们启发了可匹配图的各种子类(包括ece-graphs and vce-graphs)之间的关系,并讨论了至少3个连接性的关键因子 - 关键因素图形的特性。

A graph G is equimatchable if every maximal matching of G has the same cardinality. In this paper, we investigate equimatchable graphs such that the removal of any edge harms the equimatchability, called edge-critical equimatchable graphs (ECE-graphs). We show that apart from two simple cases, namely bipartite ECE-graphs and even cliques, all ECE-graphs are 2-connected factor-critical. Accordingly, we give a characterization of factor-critical ECE-graphs with connectivity 2. Our result provides a partial answer to an open question posed by Levit and Mandrescu on the characterization of well-covered graphs with no shedding vertex. We also introduce equimatchable graphs such that the removal of any vertex harms the equimatchability, called vertex-critical equimatchable graphs (VCE-graphs). To conclude, we enlighten the relationship between various subclasses of equimatchable graphs (including ECE-graphs and VCE-graphs) and discuss the properties of factor-critical ECE-graphs with connectivity at least 3.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源