论文标题
纳米座晶界和晶格扩展驱动硅空置排放异质性
Nanodiamond grain boundaries and lattice expansion drive Silicon vacancy emission heterogeneity
论文作者
论文摘要
由于其最小的声子耦合和狭窄的光学线宽,硅石硅面包(SIV $^ - $)中心是量子网络中单光子的来源的有前途的候选者。将SIV $^ - $排放与缺陷的原子尺度结构相关联,对于控制和优化量子排放至关重要,但仍然是一个杰出的挑战。在这里,我们在扫描透射电子显微镜(STEM)中使用阴极发光成像来阐明来自SIV $^ - $从纳米符号的SIV $^ - $发射中具有亚纳米尺度分辨率的结构性来源。我们表明,纳米原子的不同的结晶域表现出不同的零孔子线(ZPL)能量和亮度的差异,而近表面SIV $^ - $发射器仍然是亮度的。我们将这些变化与使用4D茎和衍射的局部晶格扩展相关联,并表明与ZPL相关的蓝移是由于缺陷密度异质性引起的,而红移是由于晶格扭曲引起的。
Silicon-vacancy (SiV$^-$) centers in diamond are promising candidates as sources of single-photons in quantum networks due to their minimal phonon coupling and narrow optical linewidths. Correlating SiV$^-$ emission with the defect's atomic-scale structure is important for controlling and optimizing quantum emission, but remains an outstanding challenge. Here, we use cathodoluminescence imaging in a scanning transmission electron microscope (STEM) to elucidate the structural sources of non-ideality in the SiV$^-$ emission from nanodiamonds with sub-nanometer-scale resolution. We show that different crystalline domains of a nanodiamond exhibit distinct zero-phonon line (ZPL) energies and differences in brightness, while near-surface SiV$^-$ emitters remain bright. We correlate these changes with local lattice expansion using 4D STEM and diffraction, and show that associated blue shifts from the ZPL are due to defect density heterogeneity, while red shifts are due to lattice distortions.