论文标题
晶格量子图哈密顿的连续性极限
Continuum limit of the lattice quantum graph Hamiltonian
论文作者
论文摘要
我们考虑了欧几里得空间中方格上的量子图哈密顿量,我们表明,汉密尔顿人的光谱在连续性极限的欧几里得空间上收敛于相应的schrödingerocerator,并且在某些情况下,相应的特征性函数和相应的特征函数和特征函数也会趋于汇聚。我们将离散的Schrödinger运营商作为中级运营商,我们使用第二和第三作者对离散Schrödinger运营商的连续限制的最新结果。
We consider the quantum graph Hamiltonian on the square lattice in Euclidean space, and we show that the spectrum of the Hamiltonian converges to the corresponding Schrödinger operator on the Euclidean space in the continuum limit, and that the corresponding eigenfunctions and eigenprojections also converge in some sense. We employ the discrete Schrödinger operator as the intermediate operator, and we use a recent result by the second and third author on the continuum limit of the discrete Schrödinger operator.