论文标题
几何深学习揭示了微观运动的时空指纹
Geometric deep learning reveals the spatiotemporal fingerprint of microscopic motion
论文作者
论文摘要
生命系统中动态过程的表征为其机械解释和与生物学功能的联系提供了重要的线索。由于显微镜技术的最新进展,现在有可能在生理条件下在多个时空尺度下常规记录细胞,细胞器和单个分子的运动。但是,在拥挤且复杂的环境中发生的动态的自动分析仍然落后于微观图像序列的获取。在这里,我们提出了一个基于几何深度学习的框架,该框架在各种与生物学相关的场景中的动力学特性进行了准确估算。这种深入学习的方法依赖于通过基于注意力的组件增强的图神经网络。通过使用几何先验处理对象特征,该网络能够执行多个任务,从将坐标链接到轨迹到推断本地和全局动态属性。我们通过将其应用于与广泛的生物学实验相对应的真实和模拟数据来证明这种方法的灵活性和可靠性。
The characterization of dynamical processes in living systems provides important clues for their mechanistic interpretation and link to biological functions. Thanks to recent advances in microscopy techniques, it is now possible to routinely record the motion of cells, organelles, and individual molecules at multiple spatiotemporal scales in physiological conditions. However, the automated analysis of dynamics occurring in crowded and complex environments still lags behind the acquisition of microscopic image sequences. Here, we present a framework based on geometric deep learning that achieves the accurate estimation of dynamical properties in various biologically-relevant scenarios. This deep-learning approach relies on a graph neural network enhanced by attention-based components. By processing object features with geometric priors, the network is capable of performing multiple tasks, from linking coordinates into trajectories to inferring local and global dynamic properties. We demonstrate the flexibility and reliability of this approach by applying it to real and simulated data corresponding to a broad range of biological experiments.