论文标题
通过多体贡献吉尔伯特抑制了非结合磁铁
Generalization of the Landau-Lifshitz-Gilbert equation by multi-body contributions to Gilbert damping for non-collinear magnets
论文作者
论文摘要
我们提出了Landau-Lifshitz-Gilbert方程的系统和顺序扩展,该方程利用吉尔伯特抑制张量对磁矩之间的角度的依赖性,这是由多体散射过程引起的。张量包括一个类似阻尼的项和对旋风磁比的校正。基于电子结构理论,这两个术语都依赖于例如磁矩的标量,各向异性,矢量 - 手续和标量 - 手续产品:$ \ vec {e} _i \ cdot \ cdot \ vec {e} _J $, $) $ \ vec {n} _ {ij} \ cdot(\ vec {e} _i \ times \ times \ vec {e} _j)$,$(\ vec {e} _i} _i \ cdot \ cdot \ cdot \ vec \ vec {e} $ \ vec {e} _i \ cdot(\ vec {e} _J \ times \ vec {e} _k)$ ...,其中某些术语在第一和第二阶内对旋转轨道field $ \ vec {n} _ {ij} $进行。我们使用亚历山大·安德森(Alexander-Anderson)模型以及沉积在AU(111)表面上的磁性二聚体中的时间依赖性密度函数理论探索不同贡献的大小。
We propose a systematic and sequential expansion of the Landau-Lifshitz-Gilbert equation utilizing the dependence of the Gilbert damping tensor on the angle between magnetic moments, which arises from multi-body scattering processes. The tensor consists of a damping-like term and a correction to the gyromagnetic ratio. Based on electronic structure theory, both terms are shown to depend on e.g. the scalar, anisotropic, vector-chiral and scalar-chiral products of magnetic moments: $\vec{e}_i\cdot\vec{e}_j$, $(\vec{n}_{ij}\cdot\vec{e}_i)(\vec{n}_{ij}\cdot\vec{e}_j)$, $\vec{n}_{ij}\cdot(\vec{e}_i\times\vec{e}_j)$, $(\vec{e}_i\cdot\vec{e}_j)^2$, $\vec{e}_i\cdot(\vec{e}_j\times\vec{e}_k)$..., where some terms are subjected to the spin-orbit field $\vec{n}_{ij}$ in first and second order. We explore the magnitude of the different contributions using both the Alexander-Anderson model and time-dependent density functional theory in magnetic adatoms and dimers deposited on Au(111) surface.