论文标题
海森堡模型的重归于群体理论
Renormalization-Group Theory of the Heisenberg Model in d Dimensions
论文作者
论文摘要
经典的Heisenberg模型通过使用傅立叶 - legendre膨胀,在d = 1的空间d二素蛋白中求解,并通过d> 1的migdal-kadanoff近似。相变温度,能量密度和特定热量以任意维度为单位d。 Fisher的确切结果在D = 1中恢复。在d = 2中恢复了有序相,常规或代数的有序相(与产生代数有序相的XY模型相比)。常规有序的相位发生在d> 2处。这种方法为海森堡本地自由度开辟了复杂系统计算的道路。
The classical Heisenberg model has been solved in spatial d dimensins, exactly in d=1 and by the Migdal-Kadanoff approximation in d>1, by using a Fourier-Legendre expansion. The phase transition temperatures, the energy densities, and the specific heats are calculated in arbitrary dimension d. Fisher's exact result is recovered in d=1. The absence of an ordered phase, conventional or algebraic (in contrast to the XY model yielding an algebraically ordered phase), is recovered in d=2. A conventionally ordered phase occurs at d>2. This method opens the way to complex-system calculations with Heisenberg local degrees of freedom.