论文标题

粘性流体导管中线性和非线性周期性流动波的实验研究

Experimental investigations of linear and nonlinear periodic traveling waves in a viscous fluid conduit

论文作者

Mao, Yifeng, Hoefer, Mark A.

论文摘要

由两个可混杂的动力学产生的导管,具有高粘度对比度的Stoks液体表现出丰富的非线性波动力学。但是,对于培养基的基本波色散特性知之甚少。在目前的工作中,泵用于注入一个时间周期性流,该流动引起了沿导管界面沿导管界面的大小振幅周期性周期性流动波的激发。这个波动者问题被用作测量线性和非线性色散关系以及相应的周期性波动曲线的一种手段。与完全非线性的长波模型(导管方程式)和两stokes流量的分析计算的线性分散关系相比,测量值是有利的。观察到临界频率,标志着传播和非传播(空间衰减)波之间的阈值。波谱的测量和波数频率分散关系定量与导管方程的波解相一致。观察到导管方程的预测临界频率的升级,并通过将弱的循环流纳入完整的两stokes流量模型来解释,我们观察到在实验中可以操作。当边界条件对应于导管方程的非线性周期性行驶波解的时间曲线,弱非线性和强烈非线性时,观察到cNoidal型波被观察到与导管非线性分散性关系和波轮廓的定量一致。这个WaveMaker问题是对粘性流体导管非线性波动力学中更通用边界价值问题的实验研究的重要先驱。

Conduits generated by the buoyant dynamics between two miscible, Stokes fluids with high viscosity contrast exhibit rich nonlinear wave dynamics. However, little is known about the fundamental wave dispersion properties of the medium. In the present work, a pump is used to inject a time-periodic flow that results in the excitation of propagating small and large amplitude periodic traveling waves along the conduit interface. This wavemaker problem is used as a means to measure the linear and nonlinear dispersion relations and corresponding periodic traveling wave profiles. Measurements are favorably compared with predictions from a fully nonlinear, long-wave model (the conduit equation) and the analytically computed linear dispersion relation for two-Stokes flow. A critical frequency is observed, marking the threshold between propagating and non-propagating (spatially decaying) waves. Measurements of wave profiles and the wavenumber-frequency dispersion relation quantitatively agree with wave solutions of the conduit equation. An upshift from the conduit equation's predicted critical frequency is observed and is hypothesized to be explained by incorporating a weak recirculating flow into the full two-Stokes flow model which we observe to be operable in the experiment. When the boundary condition corresponds to the temporal profile of a nonlinear periodic traveling wave solution of the conduit equation, weakly nonlinear and strongly nonlinear, cnoidal-type waves are observed that quantitatively agree with the conduit nonlinear dispersion relation and wave profiles. This wavemaker problem is an important precursor to the experimental investigation of more general boundary value problems in viscous fluid conduit nonlinear wave dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源