论文标题
在弱典型的形态上
On weakly étale morphisms
论文作者
论文摘要
我们表明,用来定义方案的亲泰勒特部位的弱典型形态的特征是提升性质类似于形式上典型形态的特征。为了证明这一点,我们证明了一个称为Henselian Descent的定理,这是一个方案为FPQC拓扑定义捆绑的事实的“ Henselized版本”。最后,我们表明,在几何形状产生的常规环上弱的代数是ind-étale,而弱的代数并不总是沿着弹性环的同态同态。
We show that the weakly étale morphisms, used to define the pro-étale site of a scheme, are characterized by a lifting property similar to the one which characterizes formally étale morphisms. In order to prove this, we prove a theorem called Henselian descent which is a "Henselized version" of the fact that a scheme defines a sheaf for the fpqc topology. Finally, we show that weakly étale algebras over regular rings arising in geometry are ind-étale and that weakly étale algebras do not always lift along surjective ring homomorphisms.