论文标题
浅光学镊子中单元原子的窄线成像
Narrow-line imaging of single strontium atoms in shallow optical tweezers
论文作者
论文摘要
到目前为止,仅使用宽$^{1 \ hspace {-0.3EX}} S_0 $ - $ - $ - $ - $ - $^{1 \ hspace {-0.3Ex}} p_1 $ transition。对于yb,使用狭窄的(183 kHz范围)$^{1 \ hspace {-0.3EX}} s_0 $ - $ - $ - $ - $^{3 \ hspace {-0.3Ex}} p_1 $在具有魔术波动型的魔术波动中的镊子中证明了用于同时成像和冷却的过渡,以表现出具有成像型的型型型。我们使用其更窄(7.4 kHz范围的)$^{1 \ hSpace {-0.3EX}} S_0 $ - $ - $ - $ - $ - $ - $ - $^{-0.3Ex}} p_1 $ transition使用其更窄(7.4 kHz {-0.3Ex}} s_0 $^{-0.3ex}} p_1 $ transition。原子被困在\ textit {non} - 魔术波长镊子中。我们检测到西塞弗斯冷却过程中散射的光子,从而使原子在整个成像过程中保持镊子的运动基态。检测的保真度为0.9991(4),存活率为0.97(2)。镊子中的原子可以在成像条件下持续79(3)秒,以使数百张图像拍摄,这主要受背景气体碰撞的限制。我们以36个镊子的载体检测原子,其光线为813.4 nm,陷阱深度为135(20)$μ$ k。该陷阱深度比在宽$^{1 \ hspace {-0.3EX}} s_0 $ - $ - $^{1 \ hspace {-0.3Ex}} p_1 $ trantione中通常使用的陷阱深度三倍。只要所有陷阱频率都比成像过渡线宽更大,窄线成像为进一步降低该陷阱深度的可能性开辟了可能性。在非魔术波长镊子中使用窄线宽过渡的成像也可以选择给定镊子进行选择性成像。作为演示,我们从数组中有选择地映像(隐藏)一个镊子。这为量子误差校正协议提供了有用的工具。
Single strontium atoms held in optical tweezers have so far only been imaged using the broad $^{1\hspace{-0.3ex}}S_0$-$^{1\hspace{-0.3ex}}P_1$ transition. For Yb, use of the narrow (183 kHz-wide) $^{1\hspace{-0.3ex}}S_0$-$^{3\hspace{-0.3ex}}P_1$ transition for simultaneous imaging and cooling has been demonstrated in tweezers with a magic wavelength for the imaging transition. We demonstrate high-fidelity imaging of single Sr atoms using its even narrower (7.4 kHz-wide) $^{1\hspace{-0.3ex}}S_0$ - $^{3\hspace{-0.3ex}}P_1$ transition. The atoms are trapped in \textit{non}-magic-wavelength tweezers. We detect the photons scattered during Sisyphus cooling, thus keeping the atoms near the motional ground state of the tweezer throughout imaging. The fidelity of detection is 0.9991(4) with a survival probability of 0.97(2). An atom in a tweezer can be held under imaging conditions for 79(3) seconds allowing for hundreds of images to be taken, limited mainly by background gas collisions. We detect atoms in an arrary of 36 tweezers with 813.4-nm light and trap depths of 135(20) $μ$K. This trap depth is three times shallower than typically used for imaging on the broad $^{1\hspace{-0.3ex}}S_0$ - $^{1\hspace{-0.3ex}}P_1$ transition. Narrow-line imaging opens the possibility to even further reduce this trap depth, as long as all trap frequencies are kept larger than the imaging transition linewidth. Imaging using a narrow-linewidth transition in a non-magic-wavelength tweezer also allows for selective imaging of a given tweezer. As a demonstration, we selectively image (hide) a single tweezer from the array. This provides a useful tool for quantum error correction protocols.