论文标题

ACC对于终端三倍的最小日志差异

ACC for minimal log discrepancies of terminal threefolds

论文作者

Han, Jingjun, Liu, Jihao, Luo, Yujie

论文摘要

我们证明,最小对数差异的ACC猜想在$ [1-δ,+\ infty)$中的三倍,其中$δ> 0 $仅取决于系数集。我们还研究了里德(Reid)对成对的一般大象,并表明了Shokurov关于$(ε,n)$的存在的猜想 - 对于任何$ε\ geq 1 $的三倍的补充。作为关键重要步骤,我们证明了分隔符计算终端三倍的最小对数差异的统一界限。我们显示了三倍的规范阈值的ACC,并且三倍规范阈值的积累值等于$ \ {0 \ {0 \} \ cup \ {\ frac {1} {n} {n} {n} \} _ {

We prove that the ACC conjecture for minimal log discrepancies holds for threefolds in $[1-δ,+\infty)$, where $δ>0$ only depends on the coefficient set. We also study Reid's general elephant for pairs, and show Shokurov's conjecture on the existence of $(ε,n)$-complements for threefolds for any $ε\geq 1$. As a key important step, we prove the uniform boundedness of divisors computing minimal log discrepancies for terminal threefolds. We show the ACC for threefold canonical thresholds, and that the set of accumulation points of threefold canonical thresholds is equal to $\{0\}\cup\{\frac{1}{n}\}_{n\in\mathbb Z_{\ge 2}}$ as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源