论文标题
单壁纳米管中的水流:氧气使它滑倒,氢使其粘
Water flow in single-wall nanotubes: Oxygen makes it slip, hydrogen makes it stick
论文作者
论文摘要
实验测量结果报道了碳纳米管中碳纳米管中不存在的超快速和半径依赖的水转运。尽管付出了很大的努力,但这种对比(和迷人)行为的起源尚不清楚。在这里,在基于机器学习的分子动力学模拟的帮助下,我们研究了单壁碳和硝酸硼纳米管中的水运输。我们的仿真显示,两种材料上的水平滑坡都显示出较大的,水的水平滑动,与硝酸硼相比,碳表面上的摩擦确实低约5美元。对两种材料的扩散机制的分析表明,碳上的快水转运受易于氧的运动控制,而氮化硼的较高摩擦是由特定的氢氮相互作用引起的。这项工作不仅可以清楚地参考单壁纳米管中水流的前所未有的准确性,而且还提供了对其半径和物质依赖性的详细机械洞察力,以实现未来的技术应用。
Experimental measurements have reported ultra-fast and radius-dependent water transport in carbon nanotubes which are absent in boron nitride nanotubes. Despite considerable effort, the origin of this contrasting (and fascinating) behaviour is not understood. Here, with the aid of machine learning-based molecular dynamics simulations that deliver first-principles accuracy, we investigate water transport in single-wall carbon and boron nitride nanotubes. Our simulations reveal a large, radius-dependent hydrodynamic slippage on both materials with water experiencing indeed a $\approx 5$ times lower friction on carbon surfaces compared to boron nitride. Analysis of the diffusion mechanisms across the two materials reveals that the fast water transport on carbon is governed by facile oxygen motion, whereas the higher friction on boron nitride arises from specific hydrogen-nitrogen interactions. This work not only delivers a clear reference of unprecedented accuracy for water flow in single-wall nanotubes, but also provides detailed mechanistic insight into its radius and material dependence for future technological application.