论文标题
通过半对称张量PCA对多个网络数据进行多变量分析
Multivariate Analysis for Multiple Network Data via Semi-Symmetric Tensor PCA
论文作者
论文摘要
网络数据通常在各种应用程序中收集,代表感兴趣的特征之间直接测量或统计上推断的连接。在越来越多的域中,这些网络会随着时间的流逝而收集,例如在不同日期或多个主题之间的社交媒体平台用户之间的交互,例如在大脑连接性的多主题研究中。在分析多个大型网络时,降低降低技术通常用于将网络嵌入更易于处理的低维空间中。为此,我们通过专门的张量分解为网络集合开发了主组件分析(PCA)的框架,我们将半对称性张量PCA或SS-TPCA定为术语。我们得出计算有效的算法来计算我们提出的SS-TPCA分解,并在标准的低级别信号加噪声模型下建立方法的统计效率。值得注意的是,我们表明SS-TPCA具有与经典矩阵PCA相同的估计精度,并且与网络中顶点数的平方根成正比,而不是预期的边缘数量。我们的框架继承了古典PCA的许多优势,适用于各种无监督的学习任务,包括识别主要网络,隔离有意义的更改点或外出观察,以及表征最不同边缘的“可变性网络”。最后,我们证明了提案对模拟数据的有效性以及经验法律研究的示例。用于建立我们主要一致性结果的技术令人惊讶地简单明了,可能会在其他各种网络分析问题中找到使用。
Network data are commonly collected in a variety of applications, representing either directly measured or statistically inferred connections between features of interest. In an increasing number of domains, these networks are collected over time, such as interactions between users of a social media platform on different days, or across multiple subjects, such as in multi-subject studies of brain connectivity. When analyzing multiple large networks, dimensionality reduction techniques are often used to embed networks in a more tractable low-dimensional space. To this end, we develop a framework for principal components analysis (PCA) on collections of networks via a specialized tensor decomposition we term Semi-Symmetric Tensor PCA or SS-TPCA. We derive computationally efficient algorithms for computing our proposed SS-TPCA decomposition and establish statistical efficiency of our approach under a standard low-rank signal plus noise model. Remarkably, we show that SS-TPCA achieves the same estimation accuracy as classical matrix PCA, with error proportional to the square root of the number of vertices in the network and not the number of edges as might be expected. Our framework inherits many of the strengths of classical PCA and is suitable for a wide range of unsupervised learning tasks, including identifying principal networks, isolating meaningful changepoints or outlying observations, and for characterizing the "variability network" of the most varying edges. Finally, we demonstrate the effectiveness of our proposal on simulated data and on an example from empirical legal studies. The techniques used to establish our main consistency results are surprisingly straightforward and may find use in a variety of other network analysis problems.