论文标题

第一原告氮化硼中旋转量子轴相干时间的理论

First-principles theory of extending the spin qubit coherence time in hexagonal boron nitride

论文作者

Lee, Jaewook, Park, Huijin, Seo, Hosung

论文摘要

六角硼(H-BN)中带负电荷的硼空缺(VB-)是用于固态量子应用的二维材料中快速发展的Qubit平台。但是,由于H-BN宿主的固有致密的核自旋浴,它们的自旋相干时间(T2)非常短,仅限于几微秒。由于连贯性时间是自旋Qubt的最基本特性之一,因此Vb的短T2时间可能会显着限制其作为有前途的自旋量子候选者的潜力。在这项研究中,我们从理论上提出了两种材料工程方法,它们可以实质上将VB-SPIN的T2时间扩展到其固有T2的四倍。我们通过将密度函数理论和聚类相关性扩展结合在一起,进行了多体型计算,并表明将H-BN中的所有硼原子用10b同位素替换为10b同位素会导致Vb-自旋的连贯性增强,以三倍的倍数。另外,通过诱导vb-的曲率,Vb-的T2时间可以增强1.3倍。本文中,我们阐明曲率诱导的不均匀菌株会产生空间变化的四极核相互作用,从而有效地抑制了浴室中的核自旋触发器动力学。重要的是,我们发现同位素富集和应变工程的组合可以最大化VB-T2,分别为单层和多层H 10亿H 107.2和161.9μs产生207.2和161.9μs。此外,我们的结果可以应用于H-BN中的任何自旋值,从而增强了它们作为材料平台的潜力,以实现高精度量子传感器,量子自旋寄存器和原子上薄的量子磁体。

Negatively charged boron vacancies (VB-) in hexagonal boron nitride (h-BN) are a rapidly developing qubit platform in two-dimensional materials for solid-state quantum applications. However, their spin coherence time (T2) is very short, limited to a few microseconds owing to the inherently dense nuclear spin bath of the h-BN host. As the coherence time is one of the most fundamental properties of spin qubits, the short T2 time of VB- could significantly limit its potential as a promising spin qubit candidate. In this study, we theoretically proposed two materials engineering methods, which can substantially extend the T2 time of the VB- spin by four times more than its intrinsic T2. We performed quantum many-body computations by combining density functional theory and cluster correlation expansion and showed that replacing all the boron atoms in h-BN with the 10B isotope leads to the coherence enhancement of the VB- spin by a factor of three. In addition, the T2 time of the VB- can be enhanced by a factor of 1.3 by inducing a curvature around VB-. Herein, we elucidate that the curvature-induced inhomogeneous strain creates spatially varying quadrupole nuclear interactions, which effectively suppress the nuclear spin flip-flop dynamics in the bath. Importantly, we find that the combination of isotopic enrichment and strain engineering can maximize the VB- T2, yielding 207.2 and 161.9 μs for single- and multi-layer h-10BN, respectively. Furthermore, our results can be applied to any spin qubit in h-BN, strengthening their potential as material platforms to realize high-precision quantum sensors, quantum spin registers, and atomically thin quantum magnets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源