论文标题
在关键的$ l^q $的Sobolev和BESOV空间中,Navier-Stokes方程的均匀稳定,通过有限的尺寸内部局部反馈控制
Uniform stabilization of Navier-Stokes equations in critical $L^q$-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls
论文作者
论文摘要
我们考虑在有界域$ω$上定义的2或3维无压的Navier-Stokes方程,该方程没有滑移边界条件,并受到外部力量的影响,被认为会导致不稳定。然后,我们试图通过有限的尺寸反馈控制,在关键的$ l^q $基于$ l^q $的Sobolev和BESOV空间中,在不稳定平衡解决方案附近统一稳定这种N-S系统。这些空间是$ d = 3 $的“接近” $ l^3(ω)$。这种功能设置很重要。实际上,在不受控制的N-S动力学的情况下,广泛的研究工作最近导致了空间$ l^3(\ Mathbb {r}^3)$,是在整个空间中出现良好性问题的关键空间。因此,我们目前的工作设法解决了相应相关的功能空间设置中受控的N-S动力学的统一稳定问题。在本文中,反馈控件位于任意小的开放式子域$ω$ $ω$上。除了在此类关键功能空间设置中提供统一稳定问题的解决方案外,本文还可以在概念和计算水平上进行大量改进和简化文献中更严格的希尔伯特空间设置中给出的解决方案。此外,这种治疗在随后的论文中为作者的最终目标奠定了基础。批判性地基于未识别兼容性条件的上述低功能水平,随后的纸张在肯定的问题中解决了一个开放的问题:是否可以通过局部切向边界反馈控制统一的稳定(在哪个添加有限的尺寸)中,在DIM $ $ω= 3 $中也可能有限。
We consider 2- or 3-dimensional incompressible Navier-Stokes equations defined on a bounded domain $Ω$, with no-slip boundary conditions and subject to an external force, assumed to cause instability. We then seek to uniformly stabilize such N-S system, in the vicinity of an unstable equilibrium solution, in critical $L^q$-based Sobolev and Besov spaces, by finite dimensional feedback controls. These spaces are `close' to $L^3(Ω)$ for $d=3$. This functional setting is significant. In fact, in the case of the uncontrolled N-S dynamics, extensive research efforts have recently lead to the space $L^3(\mathbb{R}^3)$ as being a critical space for the issue of well-posedness in the full space. Thus, our present work manages to solve the stated uniform stabilization problem for the controlled N-S dynamics in a correspondingly related function space setting. In this paper, the feedback controls are localized on an arbitrarily small open interior subdomain $ω$ of $Ω$. In addition to providing a solution of the uniform stabilization problem in such critical function space setting, this paper manages also to much improve and simplify, at both the conceptual and computational level, the solution given in the more restrictive Hilbert space setting in the literature. Moreover, such treatment sets the foundation for the authors' final goal in a subsequent paper. Based critically on said low functional level where compatibility conditions are not recognized, the subsequent paper solves in the affirmative a presently open problem: whether uniform stabilization by localized tangential boundary feedback controls, which-in addition-are finite dimensional, is also possible in dim $Ω= 3$.