论文标题

三点能量相关器和天体扩展

Three-point energy correlators and the celestial block expansion

论文作者

Chang, Cyuan-Han, Simmons-Duffin, David

论文摘要

我们研究了三点能量相关器(EEEC),该相关器定义为在天体上不同位置的三个能量探测器的产物的矩阵元素。洛伦兹对称性意味着可以将EEEC分解为称为天体块的特殊功能。我们在共线极限周围的膨胀中计算三点天体块,在那里,三个检测器在天体球上相互接近。主术语是传统的$ d { - } 2 $ - 维度四点共形块,因此colineareeEC在$ d { - } 2 $ dimensions中的共同不景气的四点功能就像一个共同不景气的四点函数。我们在弱耦合的$ \ Mathcal {n} = 4 $ sym and qCD中以领先的非平凡顺序获得共线EEEC的共形块分解系数。这些数据使我们能够在各种运动学限制下对共线EEEC进行某些全端口预测,包括OPE限制和双灯酮极限。我们还研究EEEC满足的病房身份,并在EEEC中计算弱耦合$ \ MATHCAL {n} = 4 $ SYMS中的接触术语。最后,我们研究了在强耦合时在平面$ \ mathcal {n} = 4 $ sym中的EEEC的天体块扩展,从而确定了$λ$以较大$λ$的领先和第一个转向顺序的天体块系数。

We study the three-point energy correlator (EEEC), defined as a matrix element of a product of three energy detectors at different locations on the celestial sphere. Lorentz symmetry implies that the EEEC can be decomposed into special functions called celestial blocks. We compute three-point celestial blocks in an expansion around the collinear limit, where the three detectors approach each other on the celestial sphere. The leading term is a traditional $d{-}2$-dimensional four-point conformal block, and thus the collinear EEEC behaves like a conformally-invariant four-point function in $d{-}2$ dimensions. We obtain the coefficients of the conformal block decomposition for the collinear EEEC at leading nontrivial order in weakly-coupled $\mathcal{N}=4$ SYM and QCD. These data allow us to make certain all-orders predictions for the collinear EEEC in various kinematic limits, including the OPE limit and the double lightcone limit. We also study Ward identities satisfied by the EEEC and compute contact terms in the EEEC in weakly-coupled $\mathcal{N}=4$ SYM. Finally, we study the celestial block expansion of the EEEC in planar $\mathcal{N}=4$ SYM at strong coupling, determining celestial block coefficients to leading and first subleading order at large $λ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源