论文标题

最大$ l^p $ - 用于抽象演化方程,并应用于闭环边界反馈控制问题

Maximal $L^p$-regularity for an abstract evolution equation with applications to closed-loop boundary feedback control problems

论文作者

Lasiecka, Irena, Priyasad, Buddhika, Triggiani, Roberto

论文摘要

在本文中,我们提出了一个抽象的最大$ l^p $ - 定期结果,最高$ t = \ infty $,它被调整为捕获抛物线类型的(线性)偏微分方程,该方程定义在有限的尺寸和有限的尺寸稳定性,稳定性,反馈控件(部分)上(一部分)。插图还包括一个更古典的边界抛物线示例外,还有两个最近的设置:(i)$ 3D $ -NAVIER-Stokes方程,具有有限的尺寸,局部,边界切向切向反馈稳定控制以及具有有限尺寸,本地化,反馈,稳定性的有限尺寸,稳定性的BousSinesQ系统,用于热力控制,用于热力控制。

In this paper we present an abstract maximal $L^p$-regularity result up to $T = \infty$, that is tuned to capture (linear) Partial Differential Equations of parabolic type, defined on a bounded domain and subject to finite dimensional, stabilizing, feedback controls acting on (a portion of) the boundary. Illustrations include, beside a more classical boundary parabolic example, two more recent settings: (i) the $3d$-Navier-Stokes equations with finite dimensional, localized, boundary tangential feedback stabilizing controls as well as Boussinesq systems with finite dimensional, localized, feedback, stabilizing, Dirichlet boundary control for the thermal equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源