论文标题

在某些稀疏的随机图中,诱导距离匹配很大

Large induced distance matchings in certain sparse random graphs

论文作者

Tian, Fang, Sun, Yun-Qin, Liu, Zi-Long

论文摘要

对于固定的整数$ k \ geqslant 2 $,让$ g \ in \ mathcal {g}(n,p)$成为一个简单的连接图,上面是$ n \ rightArrow \ rightarrow \ infty $ temtices,具有预期的$ d = np $ d = np $ d = np $ d = np $ d \ d \ d \ geqslant c $ d \ geqslant c $和$ d^$ d^$ d^$ npands for Affore for loffage。我们表明,任何最大边缘$ m $ in $ g $的最大收集的渐近大小,因此$ m $中的两个边缘在距离$ k $之内,称为距离$ k $ -matching,在$ \ frac {(k-1)n \ log d}之间d} {2d^{k-1}} $。我们还设计了一种随机贪婪算法,以生成一个大距离$ k $,以$ g $匹配,并具有渐近尺寸$ \ frac {kn \ log d} {4d^{k-1}} $。我们的结果部分将结果概括为与CASE的最大距离$ K $匹配的大小,$ K = 2 $或$ D = C $,对于某些大型常数$ C $。

For a fixed integer $k\geqslant 2$, let $G\in \mathcal{G}(n,p)$ be a simple connected graph on $n\rightarrow\infty$ vertices with the expected degree $d=np$ satisfying $d\geqslant c$ and $d^{k-1}= o(n)$ for some large enough constant $c$. We show that the asymptotical size of any maximal collection of edges $M$ in $G$ such that no two edges in $M$ are within distance $k$, which is called a distance $k$-matching, is between $ \frac{(k-1)n\log d}{4d^{k-1}}$ and $ \frac{k n \log d}{2d^{k-1}}$. We also design a randomized greedy algorithm to generate one large distance $k$-matching in $G$ with asymptotical size $ \frac{kn\log d}{4d^{k-1}}$. Our results partially generalize the results on the size of the largest distance $k$-matchings from the case $k=2$ or $d=c$ for some large constant $c$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源