论文标题
距离距离二环类的距离凯利图
Distance-regular Cayley graphs over dicyclic groups
论文作者
论文摘要
距离规则的凯利图的表征源于识别强烈规则的cayley图的问题,或等效地定期的部分差异集。在本文中,获得了双环基上距离定型的Cayley图的分类。更具体地说,可以表明,双环组上的每个距离定型的cayley图都是完整的图形,完整的多部分图形或非直径为直径$ 3 $的非距离双方距离距离距离图,满足了一些其他条件。
The characterization of distance-regular Cayley graphs originated from the problem of identifying strongly regular Cayley graphs, or equivalently, regular partial difference sets. In this paper, a classification of distance-regular Cayley graphs on dicyclic groups is obtained. More specifically, it is shown that every distance-regular Cayley graph on a dicyclic group is a complete graph, a complete multipartite graph, or a non-antipodal bipartite distance-regular graph with diameter $3$ satisfying some additional conditions.