论文标题
机器学习有助于新兴网络的整体切换优化
Machine Learning Aided Holistic Handover Optimization for Emerging Networks
论文作者
论文摘要
在新兴蜂窝网络中的网络致密性和多波段操作之后,移动性和切换管理已成为主要的瓶颈。对于不同类型的移交,即频率间和频率内移交,整体移动性管理解决方案仍然很少,这一事实进一步加剧了问题。本文提出了第一个移动性管理解决方案,该解决方案同时优化了相关的与频率间的A5参数和频率相关的A3参数。我们分析和优化五个参数,即触发(TTT),A5-阈值1,A5-Threshold2,A3-TTT和A3-FORKSET,以共同最大化三个关键的关键性能指标(KPIS):Edge用户用户参考信号接收功率(RSRP),手动成功率(HOSR成功率(HOSR)和负载频率频段和频率频段之间。在没有系统级复杂性引起的可行分析模型的情况下,我们利用机器学习来量化KPI作为移动性参数的函数。基于XGBoost的模型对于Edge RSRP和HOSR具有最佳性能,而随机森林的表现优于其他人进行负载预测。对迁移率参数的分析提供了几种见解:1)A3和A5参数之间存在很强的耦合; 2)每个KPI都存在一组最佳参数; 3)不同KPI的最佳参数各不相同。我们还执行基于SHAP的灵敏度,以帮助解决KPI之间的参数冲突。最后,我们提出一个最大化问题,表明它是非凸的,并利用模拟退火(SA)解决了它。结果表明,基于ML的SA-ADED解决方案比蛮力方法快14倍以上,最佳效果略有损失。
In the wake of network densification and multi-band operation in emerging cellular networks, mobility and handover management is becoming a major bottleneck. The problem is further aggravated by the fact that holistic mobility management solutions for different types of handovers, namely inter-frequency and intra-frequency handovers, remain scarce. This paper presents a first mobility management solution that concurrently optimizes inter-frequency related A5 parameters and intra-frequency related A3 parameters. We analyze and optimize five parameters namely A5-time to trigger (TTT), A5-threshold1, A5-threshold2, A3-TTT, and A3-offset to jointly maximize three critical key performance indicators (KPIs): edge user reference signal received power (RSRP), handover success rate (HOSR) and load between frequency bands. In the absence of tractable analytical models due to system level complexity, we leverage machine learning to quantify the KPIs as a function of the mobility parameters. An XGBoost based model has the best performance for edge RSRP and HOSR while random forest outperforms others for load prediction. An analysis of the mobility parameters provides several insights: 1) there exists a strong coupling between A3 and A5 parameters; 2) an optimal set of parameters exists for each KPI; and 3) the optimal parameters vary for different KPIs. We also perform a SHAP based sensitivity to help resolve the parametric conflict between the KPIs. Finally, we formulate a maximization problem, show it is non-convex, and solve it utilizing simulated annealing (SA). Results indicate that ML-based SA-aided solution is more than 14x faster than the brute force approach with a slight loss in optimality.