论文标题

等级4的非晶格尾尾c组和隔行数2

Non-crystallographic tail-triangle C-groups of rank 4 and interlacing number 2

论文作者

Loyola, Mark L., Leyrita, Nonie Elvin S., Penas, Ma. Louise Antonette N. De Las

论文摘要

这项工作将模块化还原技术应用于具有标签5、3和$ k = 3、4、5,\ text {or} 6 $的恒星图4的Coxeter组。作为Moduli,我们在二次整数环$ \ mathbb {z} [τ] $中使用素数,其中$τ= \ frac {1 + \ sqrt {5}}} {2} {2} $,黄金比率。我们证明,每个还原的组都是C组,而不管还原中使用了哪种素数。每当适用时,我们还将每个还原的组分为有限字段的反射组。

This work applies the modular reduction technique to the Coxeter group of rank 4 having a star diagram with labels 5, 3, and $k = 3, 4, 5, \text{ or } 6$. As moduli, we use the primes in the quadratic integer ring $\mathbb{Z}[τ]$, where $τ= \frac{1 + \sqrt{5}}{2}$, the golden ratio. We prove that each reduced group is a C-group, regardless of the prime used in the reduction. We also classify each reduced group as a reflection group over a finite field, whenever applicable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源