论文标题

利用独立工具:识别和分布概括

Exploiting Independent Instruments: Identification and Distribution Generalization

论文作者

Saengkyongam, Sorawit, Henckel, Leonard, Pfister, Niklas, Peters, Jonas

论文摘要

仪器变量模型使我们能够确定协变量$ x $和响应$ y $之间的因果功能,即使在存在未观察到的混淆的情况下。大多数现有估计器都假定响应$ y $和隐藏混杂因素中的错误项与仪器$ z $不相关。这通常是由图形分离的动机,这也证明了独立性的合理性。但是,提出独立限制会导致严格的可识别性结果。我们连接到计量经济学的现有文献,并提供了一种称为HSIC-X的实用方法,用于利用独立性,可以与任何基于梯度的学习程序结合使用。我们看到,即使在可识别的设置中,考虑到更高的矩可能会产生更好的有限样本结果。此外,我们利用独立性进行分布概括。我们证明,只要这些移位足够强,拟议的估计器对于仪器上的分布变化和最佳案例最佳变化都是不变的。这些结果即使在未识别的情况下,这些仪器不足以识别因果功能。

Instrumental variable models allow us to identify a causal function between covariates $X$ and a response $Y$, even in the presence of unobserved confounding. Most of the existing estimators assume that the error term in the response $Y$ and the hidden confounders are uncorrelated with the instruments $Z$. This is often motivated by a graphical separation, an argument that also justifies independence. Positing an independence restriction, however, leads to strictly stronger identifiability results. We connect to the existing literature in econometrics and provide a practical method called HSIC-X for exploiting independence that can be combined with any gradient-based learning procedure. We see that even in identifiable settings, taking into account higher moments may yield better finite sample results. Furthermore, we exploit the independence for distribution generalization. We prove that the proposed estimator is invariant to distributional shifts on the instruments and worst-case optimal whenever these shifts are sufficiently strong. These results hold even in the under-identified case where the instruments are not sufficiently rich to identify the causal function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源