论文标题
通过使用Deep Autocododer的模拟颜色图像预测风向的空间沉积
Predicting Wind-Driven Spatial Deposition through Simulated Color Images using Deep Autoencoders
论文作者
论文摘要
几个世纪以来,科学家一直观察到自然要了解支配物理世界的法律。将观察变成物理理解的传统过程很慢。构建和测试不完善的模型以解释数据中的关系。强大的新算法可以使计算机通过观察图像和视频来学习物理。受这个想法的启发,而不是使用物理量训练机器学习模型,我们使用了图像,即像素信息。对于这项工作,作为概念证明,感兴趣的物理学是风向的空间模式。这些现象包括风水沙丘和火山灰沉积,野火烟雾和空气污染羽流的特征。我们使用空间沉积模式的计算机模型模拟来近似于假设的成像设备的图像,其输出为红色,绿色和蓝色(RGB)颜色图像,其通道值范围从0到255。在本文中,我们探索了深度卷积神经网络的自动编码器,以利用风的空间态度,并在杂音中探讨,并在杂音中探索,并减少其尺寸的斑点,并在其斑点上发生斑点,并在其探索中且尺寸缩小了他们的斑点,并在其范围内探索。使用编码器降低数据维度大小,可以训练将地理和气象标量输入数量连接到编码空间的深层,完全连接的神经网络模型。一旦实现了这一目标,使用解码器重建了完整的空间模式。我们在污染源的空间沉积图像上证明了这种方法,在该图像中,编码器将维度压缩到原始大小的0.02%,并且测试数据上的完整预测模型性能达到了8%的归一化根平方误差,在空间中的符合度误差为94%,在94%的空间和精确的曲线区域下,是0.93的精确搜索区域。
For centuries, scientists have observed nature to understand the laws that govern the physical world. The traditional process of turning observations into physical understanding is slow. Imperfect models are constructed and tested to explain relationships in data. Powerful new algorithms can enable computers to learn physics by observing images and videos. Inspired by this idea, instead of training machine learning models using physical quantities, we used images, that is, pixel information. For this work, and as a proof of concept, the physics of interest are wind-driven spatial patterns. These phenomena include features in Aeolian dunes and volcanic ash deposition, wildfire smoke, and air pollution plumes. We use computer model simulations of spatial deposition patterns to approximate images from a hypothetical imaging device whose outputs are red, green, and blue (RGB) color images with channel values ranging from 0 to 255. In this paper, we explore deep convolutional neural network-based autoencoders to exploit relationships in wind-driven spatial patterns, which commonly occur in geosciences, and reduce their dimensionality. Reducing the data dimension size with an encoder enables training deep, fully connected neural network models linking geographic and meteorological scalar input quantities to the encoded space. Once this is achieved, full spatial patterns are reconstructed using the decoder. We demonstrate this approach on images of spatial deposition from a pollution source, where the encoder compresses the dimensionality to 0.02% of the original size, and the full predictive model performance on test data achieves a normalized root mean squared error of 8%, a figure of merit in space of 94% and a precision-recall area under the curve of 0.93.