论文标题

通过纯本地搜索加权$ k $ set包装的极限

Passing the Limits of Pure Local Search for Weighted $k$-Set Packing

论文作者

Neuwohner, Meike

论文摘要

We study the weighted $k$-Set Packing problem: Given a collection $S$ of sets, each of cardinality at most $k$, together with a positive weight function $w:\mathcal{S}\rightarrow\mathbb{Q}_{>0}$, the task is to compute a disjoint sub-collection $A\subseteq \mathcal{S}$ of maximum total weight.对于$ k \ leq 2 $,可以在多项式时间内解决加权$ k $ set的包装问题,但对于$ k \ geq 3 $,它变成$ np $ -hard。最近,neuwohner展示了如何获得$ \ frac {k+ε_k} {2} $的近似保证,并使用$ \ lim_ {k \ rightarrow \ rightarrow \ infty}ε_k= 0 $。她进一步表明,她的结果是渐进的最佳可能性,因为考虑到对数界面相对于某些固定权重功能的局部改进,没有算法可以产生比$ \ frac {k} {2} $更好地产生近似保证。 在本文中,我们终于展示了如何通过$ω(k)$来击败加权$ k $ -set包装问题的$ \ frac {k} {2} $的阈值。我们通过将本地搜索与黑匣子算法相结合的未加权$ K $ -SET包装问题的应用来实现这一目标。在这样做的过程中,我们设法将一般权重的近似值链接到未加权的情况下可实现的一个,并且我们最多获得了$ \ frac {k+1} {2} {2} {2} -2 \ cdot 10^{ - 4} $的所有$ k \ geq 4 $。

We study the weighted $k$-Set Packing problem: Given a collection $S$ of sets, each of cardinality at most $k$, together with a positive weight function $w:\mathcal{S}\rightarrow\mathbb{Q}_{>0}$, the task is to compute a disjoint sub-collection $A\subseteq \mathcal{S}$ of maximum total weight. For $k\leq 2$, the weighted $k$-Set Packing problem can be solved in polynomial time, but for $k\geq 3$, it becomes $NP$-hard. Recently, Neuwohner has shown how to obtain approximation guarantees of $\frac{k+ε_k}{2}$ with $\lim_{k\rightarrow\infty}ε_k=0$. She further showed her result to be asymptotically best possible in that no algorithm considering local improvements of logarithmically bounded size with respect to some fixed power of the weight function can yield an approximation guarantee better than $\frac{k}{2}$. In this paper, we finally show how to beat the threshold of $\frac{k}{2}$ for the weighted $k$-Set Packing problem by $Ω(k)$. We achieve this by combining local search with the application of a black box algorithm for the unweighted $k$-Set Packing problem to carefully chosen sub-instances. In doing so, we manage to link the approximation ratio for general weights to the one achievable in the unweighted case and we obtain guarantees of at most $\frac{k+1}{2}-2\cdot 10^{-4}$ for all $k\geq 4$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源