论文标题
tweezer-programmable 2D量子步行在哈伯德式晶格中
Tweezer-programmable 2D quantum walks in a Hubbard-regime lattice
论文作者
论文摘要
量子步行为理解和设计既直观又通用的量子算法提供了一个框架。为了利用这些步行的计算能力,重要的是能够在保持连贯性的同时对沃克遍历的图表进行编程修改。在这里,我们通过将光学镊子阵列提供的快速,可编程控制与光学晶格的可扩展,均匀的环境相结合来做到这一点。使用这种新的工具组合,我们研究了2D平方晶格上的连续时间量子步行,并使用这些步道进行空间搜索的原理证明。当缩放到更多的颗粒时,可以扩展此处演示的功能,以研究量子信息科学和模拟中的各种问题,包括在Hubbard模型中使用可调相互作用的地面和激发状态的确定性组装,以及在较大图中进行量子搜索的空间搜索,具有较大的连接性,其中通过量子步行搜索可以更有效地进行搜索。
Quantum walks provide a framework for understanding and designing quantum algorithms that is both intuitive and universal. To leverage the computational power of these walks, it is important to be able to programmably modify the graph a walker traverses while maintaining coherence. Here, we do this by combining the fast, programmable control provided by optical tweezer arrays with the scalable, homogeneous environment of an optical lattice. Using this new combination of tools we study continuous-time quantum walks of single atoms on a 2D square lattice, and perform proof-of-principle demonstrations of spatial search using these walks. When scaled to more particles, the capabilities demonstrated here can be extended to study a variety of problems in quantum information science and quantum simulation, including the deterministic assembly of ground and excited states in Hubbard models with tunable interactions, and performing versions of spatial search in a larger graph with increased connectivity, where search by quantum walk can be more effective.