论文标题

线性因子复杂性单词的拓扑不变性

Topological invariants for words of linear factor complexity

论文作者

Bell, Jason

论文摘要

给定有限的字母$σ$和一个右派单词$ w $上的字母$σ$,我们构造了一个拓扑空间$ {\ rm rec}(w)$,由所有右派复发单词组成,由$ w $的所有因素都是$ w $的所有因素,我们在同等的情况下都相同,如果这些因素是相同的,如果这些词相同。我们表明,$ {\ rm rec}(w)$可以赋予自然拓扑,我们表明,如果$ w $是线性因子复杂性的单词,则$ {\ rm rec}(w)$是有限的拓扑空间。此外,我们注意到有一些示例表明,如果$ f:\ mathbb {n} \ to \ mathbb {n} $倾向于无穷大,则是$ n \ to \ infty $的函数,然后有一个单词的因子复杂性函数$ {\ rm o}(nf(nf(n))$ rec $ rec $ rec}(\ rm rem} \ rm rm rm rm rm rm rm rm rm rm rm rm rm rm rm rm rm rm rm rm rm rm rm {最后,我们提出了一个实现问题:对于线性因子复杂性,可以出现哪些有限拓扑空间为$ {\ rm rec}(w)$?

Given a finite alphabet $Σ$ and a right-infinite word $w$ over the alphabet $Σ$, we construct a topological space ${\rm Rec}(w)$ consisting of all right-infinite recurrent words whose factors are all factors of $w$, where we work up to an equivalence in which two words are equivalent if they have the exact same set of factors (finite contiguous subwords). We show that ${\rm Rec}(w)$ can be endowed with a natural topology and we show that if $w$ is word of linear factor complexity then ${\rm Rec}(w)$ is a finite topological space. In addition, we note that there are examples which show that if $f:\mathbb{N}\to \mathbb{N}$ is a function that tends to infinity as $n\to \infty$ then there is a word whose factor complexity function is ${\rm O}(nf(n))$ such that ${\rm Rec}(w)$ is an infinite set. Finally, we pose a realization problem: which finite topological spaces can arise as ${\rm Rec}(w)$ for a word of linear factor complexity?

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源