论文标题
对数的cotangent束,Chern-Mather课程和Huh-Sturmfels互动猜想
Logarithmic cotangent bundles, Chern-Mather classes, and the Huh-Sturmfels Involution conjecture
论文作者
论文摘要
使用对数的cotangent束中的压缩,我们获得了带有正常交叉补体的开放嵌入Lagrangian Cycles pushforward的Chern类别的公式。这概括了Aluffi和Wu-Zhou的早期结果。我们公式的第一个应用是对任意仿射品种的Chern-Mather类别的几何描述,它概括了以平滑和Schon假设为基于的huh的早期结果。作为第二次应用,我们确认了一个有关截面最大似然度(ML)度和ML BIDEGREES的互动公式,该公式在2013年由Huh和Sturmfels猜想。
Using compactifications in the logarithmic cotangent bundle, we obtain a formula for the Chern classes of the pushforward of Lagrangian cycles under an open embedding with normal crossing complement. This generalizes earlier results of Aluffi and Wu-Zhou. The first application of our formula is a geometric description of Chern-Mather classes of an arbitrary very affine variety, generalizing earlier results of Huh which held under the smooth and schon assumptions. As the second application, we confirm an involution formula relating sectional maximum likelihood (ML) degrees and ML bidegrees, which was conjectured by Huh and Sturmfels in 2013.