论文标题

EPW Sextics vs EPW立方体

EPW sextics vs EPW cubes

论文作者

Kapustka, Grzegorz, Kapustka, Michal, Mongardi, Giovanni

论文摘要

我们研究了双EPW立方体和双EPW六六分数之间的对应关系,这是两个与Gushel-Mukai Fourdolds相关的两极化Hyper-Kähler歧管的家族。我们根据椭圆曲线的霍奇结构和模量空间来推断这些家族之间的关系。 作为一种应用,我们证明,相对于其相应的Gushel-mukai-mukai四倍的Kuznetsov组件,相对于在Kuznetsov组件上适当的稳定性条件相对于稳定对象的模量空间;这回答了Perry,Pertusi和Zhao提出的问题。

We study a correspondence between double EPW cubes and double EPW sextics, two families of polarized hyper-Kähler manifolds related to Gushel--Mukai fourfolds. We infer relations between these families in terms of Hodge structures and moduli spaces of elliptic curves. As an application, we prove that a very general double EPW cube is the moduli space of stable objects with respect to a suitable stability condition on the Kuznetsov component of its corresponding Gushel--Mukai fourfolds; this answers a problem posed by Perry, Pertusi and Zhao.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源