论文标题

埃及分数不足

Underapproximation by Egyptian fractions

论文作者

Nathanson, Melvyn B.

论文摘要

积极整数的增加序列$(x_i)_ {i = 1}^n $是$ n $ - 埃及的埃及不足的$θ\ in(0,1] $,如果$ \ sum_ {i = 1}}^n \ frac {1}^n \ frac {1}} {x_i} $ n $ n $ n $。 $θ$。

An increasing sequence $(x_i)_{i=1}^n$ of positive integers is an $n$-term Egyptian underapproximation of $θ\in (0,1]$ if $\sum_{i=1}^n \frac{1}{x_i} < θ$. A greedy algorithm constructs an $n$-term underapproximation of $θ$. For some but not all numbers $θ$, the greedy algorithm gives a unique best $n$-term underapproximation for all $n$. An infinite set of rational numbers is constructed for which the greedy underapproximations are best, and numbers for which the greedy algorithm is not best are also studied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源