论文标题

各向异性最小梯度函数的痕迹取决于各向异性

The trace space of anisotropic least gradient functions depends on the anisotropy

论文作者

Górny, Wojciech

论文摘要

我们研究各向异性最小梯度函数的可能痕迹。我们表明,即使在单位磁盘上,它也会随各向异性规范的变化:对于两个足够规律的严格凸范围规范,痕迹空间在且仅当规范重合时重合。恰好在痕迹空间之一中的函数的示例是由适当选择的cantor集的特征函数给出的。

We study the set of possible traces of anisotropic least gradient functions. We show that even on the unit disk it changes with the anisotropic norm: for two sufficiently regular strictly convex norms the trace spaces coincide if and only if the norms coincide. The example of a function in exactly one of the trace spaces is given by a characteristic function of a suitably chosen Cantor set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源