论文标题
各向异性最小梯度函数的痕迹取决于各向异性
The trace space of anisotropic least gradient functions depends on the anisotropy
论文作者
论文摘要
我们研究各向异性最小梯度函数的可能痕迹。我们表明,即使在单位磁盘上,它也会随各向异性规范的变化:对于两个足够规律的严格凸范围规范,痕迹空间在且仅当规范重合时重合。恰好在痕迹空间之一中的函数的示例是由适当选择的cantor集的特征函数给出的。
We study the set of possible traces of anisotropic least gradient functions. We show that even on the unit disk it changes with the anisotropic norm: for two sufficiently regular strictly convex norms the trace spaces coincide if and only if the norms coincide. The example of a function in exactly one of the trace spaces is given by a characteristic function of a suitably chosen Cantor set.