论文标题

光合作用在pico秒刻度上重新连接

Photosynthesis re-wired on the pico-second timescale

论文作者

Baikie, Tomi K., Wey, Laura T., Medipally, Hitesh, Reisner, Erwin, Nowaczyk, Marc M., Friend, Richard H., Howe, Christopher J., Schnedermann, Christoph, Rao, Akshay, Zhang, Jenny Z.

论文摘要

光系统II和I(PSII和PSI)是驱动光合作用的光反应的反应中心络合物。 PSII执行轻驱动水氧化(量子效率和催化速率高达80%和1000 $ e^{ - } \ text {s}^{ - 1} $),PSI进一步摄取收获的电子(量子效率约为〜100%)。光合作用的光收集成分的令人印象深刻的性能激发了广泛的生物学,人工和生物杂交方法,以使光合作用能够促进较高的效率和新的反应途径,例如H2进化或替代CO2固定。迄今为止,这些方法集中在PSII和PSI的末端铁硫簇的末端电子奎因酮上的电荷提取。理想情况下,可以立即从光激发反应中心提取电子,以实现最大的热力学增长。但是,这被认为是不可能的,因为反应中心在PSII内被埋葬在PSII内的4 nm和5 nm内,从细胞质面部埋入PSI。在这里,我们证明了使用体内超快瞬态吸收(TA)光谱法,可以使用活体激发的PSI和PSII直接从光激发的PSI和PSII中提取电子,并使用活的蓝细菌细胞和分离的光系统,以及外源性电子中间器2,6-二氯1,4-二氯1,4-烯唑喹酮(DCBQ)。我们假设DCBQ可以在初始光激发后氧化参与高度离域电荷转移(CT)状态的外周叶绿素颜料。我们的结果为生物能和半人工光合作用的研究和重新织机光合作用开辟了新的途径。

Photosystems II and I (PSII and PSI) are the reaction centre complexes that drive the light reactions of photosynthesis. PSII performs light-driven water oxidation (quantum efficiencies and catalysis rates of up to 80% and 1000 $e^{-}\text{s}^{-1}$, respectively) and PSI further photo-energises the harvested electrons (quantum efficiencies of ~100%). The impressive performance of the light harvesting components of photosynthesis has motivated extensive biological, artificial and biohybrid approaches to re-wire photosynthesis to enable higher efficiencies and new reaction pathways, such as H2 evolution or alternative CO2 fixation. To date these approaches have focussed on charge extraction at the terminal electron quinones of PSII and terminal iron-sulfur clusters of PSI. Ideally electron extraction would be possible immediately from the photoexcited reaction centres to enable the greatest thermodynamic gains. However, this was believed to be impossible because the reaction centres are buried around 4 nm within PSII and 5 nm within PSI from the cytoplasmic face. Here, we demonstrate using in vivo ultrafast transient absorption (TA) spectroscopy that it is possible to extract electrons directly from photoexcited PSI and PSII, using both live cyanobacterial cells and isolated photosystems, with the exogenous electron mediator 2,6-dichloro1,4-benzoquinone (DCBQ). We postulate that DCBQ can oxidise peripheral chlorophyll pigments participating in highly delocalised charge transfer (CT) states after initial photoexcitation. Our results open new avenues to study and re-wire photosynthesis for bioenergy and semi-artificial photosynthesis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源