论文标题

整体交通安全评估的网络级安全指标:案例研究

Network-level Safety Metrics for Overall Traffic Safety Assessment: A Case Study

论文作者

Chen, Xiwen, Wang, Hao, Razi, Abolfazl, Russo, Brendan, Pacheco, Jason, Roberts, John, Wishart, Jeffrey, Head, Larry, Baca, Alonso Granados

论文摘要

由于精确定位传感器,人工智能(AI)的安全功能,自动驾驶系统,连接的车辆,高通量计算和边缘计算服务器的技术进步,驾驶安全分析最近经历了前所未有的改进。特别是,深度学习(DL)方法授权卷视频处理以从路边单元(RSU)捕获的大型视频中提取与安全相关的功能。安全指标是调查撞车事故和几乎冲突事件的常用措施。但是,这些指标提供了对整个网络级流量管理的有限见解。另一方面,一些安全评估工作致力于处理崩溃报告,并确定与道路几何形状,交通量和天气状况相关的崩溃的空间和时间模式。这种方法仅依靠崩溃报告,而忽略了流量视频的丰富信息,这些信息可以帮助确定违规行为在崩溃中的作用。为了弥合这两个观点,我们定义了一组新的网络级安全指标(NSM),以通过处理RSU摄像机拍摄的图像来评估交通流的总体安全性。我们的分析表明,NSM显示出与崩溃率的显着统计关联。这种方法与简单地概括单个崩溃分析的结果不同,因为所有车辆都有助于计算NSM,而不仅仅是涉及撞车事件的NSM。该观点将流量流视为一个复杂的动态系统,其中某些节点的动作可以通过网络传播并影响其他节点的崩溃风险。我们还对附录A中的代孕安全指标(SSM)进行了全面审查。

Driving safety analysis has recently experienced unprecedented improvements thanks to technological advances in precise positioning sensors, artificial intelligence (AI)-based safety features, autonomous driving systems, connected vehicles, high-throughput computing, and edge computing servers. Particularly, deep learning (DL) methods empowered volume video processing to extract safety-related features from massive videos captured by roadside units (RSU). Safety metrics are commonly used measures to investigate crashes and near-conflict events. However, these metrics provide limited insight into the overall network-level traffic management. On the other hand, some safety assessment efforts are devoted to processing crash reports and identifying spatial and temporal patterns of crashes that correlate with road geometry, traffic volume, and weather conditions. This approach relies merely on crash reports and ignores the rich information of traffic videos that can help identify the role of safety violations in crashes. To bridge these two perspectives, we define a new set of network-level safety metrics (NSM) to assess the overall safety profile of traffic flow by processing imagery taken by RSU cameras. Our analysis suggests that NSMs show significant statistical associations with crash rates. This approach is different than simply generalizing the results of individual crash analyses, since all vehicles contribute to calculating NSMs, not only the ones involved in crash incidents. This perspective considers the traffic flow as a complex dynamic system where actions of some nodes can propagate through the network and influence the crash risk for other nodes. We also provide a comprehensive review of surrogate safety metrics (SSM) in the Appendix A.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源